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Quantifying scientific thinking using multichannel data to individualize game-based

learning remains a significant challenge for researchers and educators. Not only do

empirical studies find that learners do not possess sufficient scientific-thinking skills

to deal with the demands of the twenty-first century, but there is little agreement in

how researchers should accurately and dynamically capture scientific thinking with

game-based learning environments (GBLEs). Traditionally, in-game actions, collected

through log files, are used to define if, when, and for how long learners think scientifically

about solving complex problems with GBLEs. But can in-game actions distinguish

between learners who are thinking scientifically while solving problems vs. those who are

not? We argue that collecting multiple channels of data identifies if, when, and for how

long learners think scientifically during game-based learning compared to only in-game

actions. In this study, we examined relationships between 68 undergraduates’ pre-test

scores (i.e., prior knowledge), degree of agency, eye movements, and in-game actions

related to scientific-thinking actions during game-based learning, and performance

outcomes after learning about microbiology with Crystal Island. Results showed

significant predictive relationships between eye movements, prior knowledge, degree of

agency, and in-game actions related to scientific thinking, suggesting that combining

these data channels has the potential to capture when learners engage in scientific

thinking and its relation to performance with GBLEs. Our findings provide implications for

usingmultichannel data, e.g., eye-gaze and in-game actions, to capture scientific thinking

and inform game-learning analytics to guide instructional decision making and enhance

our understanding of scientific thinking within GBLEs. We discuss GBLEs designed to

guide individualized and adaptive game-analytics using learners’ multichannel data to

optimize scientific thinking and performance.
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1. INTRODUCTION

Scientific thinking has steered the crusade of discovery and
changed the way in which we understand, interact, and exist
in the world (Klahr et al., 2019, p. 67). As our communities
are faced with persisting, and sometimes novel, socioeconomic,
environmental, and health-related challenges (e.g., interrupting
traditional classroom instruction and resorting to remote
learning due to the COVID-19 pandemic), it is essential to
equip future generations of learners with scientific-thinking
skills (National Research Council, 2012; NASEM, 2018; Kuhl
et al., 2019). Recent advances in learning technologies, such as
game-based learning environments (GBLEs), have guided design
principles (e.g., role of agency in fostering cognitive engagement
underlying scientific thinking) that enhance learners’ skills and
knowledge related to scientific thinking and offer solutions
to problems that learners face in formal education settings
(e.g., learners being tasked with memorizing factual information
outside of real-world application; Council et al., 2011; Deater-
Deckard et al., 2013, p. 21; Morris et al., 2013, p. 607; Plass et al.,
2020b). After decades of studying cognitive processes underlying
scientific thinking for training and educational purposes (Dunbar
and Klahr, 2012, chapter 34; Byrnes and Dunbar, 2014, p. 477),
it has become clear scientific thinking relies on factors that are
personal to each learner (Klahr and Dunbar, 1988, p. 1; Dunbar
and Klahr, 2012, chapter 34). For example, prior knowledge plays
a key role in learners’ ability to formulate hypotheses. However,
studies with GBLEs use an approach that generalizes across
learners, failing to account for individual characteristics that
may impact learners’ ability to think scientifically. These issues
further compound current problems associated with providing
individualized instructions in GBLEs. If we do not know how
to capture if, when, and for how long learners engage in
scientific thinking with GBLEs, how do we provide data-driven,
individualized instruction to meet learners’ needs? Researchers
face additional challenges when capturing scientific thinking with
GBLEs because most studies rely on in-game actions, measured
solely through log files, to define if, when, and for how long
a learner is thinking scientifically about solving problems, such
as the amount of time using a scanner to test evidence (Smith
et al., 2019, p. 52). But we argue in-game actions do not provide
enough information to identify whether learners are thinking
scientifically about solving problems with GBLEs. For example,
can researchers distinguish between a learner aimlessly engaging
in an action (e.g., testing random food items) vs. a learner
engaging in an action because they are thinking scientifically
about solving a problem (e.g., testing food items based on current
hypotheses developed from information gathered)? Other data
channels such as eye movements and pre-test scores could
supplement information captured via in-game actions to inform
if, when, and for how long learners are thinking scientifically
during game-based learning. In this study, we investigated
whether eye movements, pre-test scores, degree of agency, in-
game actions, and post-test scores identified if, when, and for how
long learners were thinking scientifically about solving problems
with GBLEs. Our findings provide implications for designing
GBLEs to guide individualized and adaptive interventions based

on learners’ individual needs using their multichannel data to
optimize scientific-thinking skills and performance.

1.1. What Is Scientific Thinking?
Scientific thinking defines two types of thinking (Dunbar and
Klahr, 2012, chapter 34; Klahr et al., 2019). The first is literally
thinking about the content of science-related topics, such as
the characteristics of a virus. The second type of thinking
encompasses a set of reasoning strategies or cognitive processes,
such as inductive and deductive reasoning, problem solving, as
well as hypothesis formulation and testing (Dunbar and Klahr,
2012, chapter 34; Zimmerman and Croker, 2014, p. 245). These
two types of scientific thinking have a codependent relationship
with each other (Dunbar and Klahr, 2012, chapter 34; Klahr et al.,
2019). For instance, a learner must think about the idiosyncrasies
of a virus in relation to other infectious diseases to conceptually
understand the content, which lays the foundation for reasoning
about how a virus might spread in a research camp compared
to bacteria. Because of this, learners’ prior knowledge plays a
crucial role in scientific thinking as related to reasoning strategies
and other cognitive processes (Zimmerman and Croker, 2014, p.
245). However, few studies account for the role of learners’ prior
knowledge in their ability to think scientifically during problem
solving with GBLEs. Klahr and Dunbar (1988) developed a
framework called scientific discovery as dual search (SDDS)
which accounts for prior knowledge by describing hypothesis
formulation as relying on long-term memory to identify gaps in
knowledge to drive information-gathering actions (Dunbar and
Klahr, 2012, chapter 34; Zimmerman and Croker, 2014, p. 245).
Because of this, SDDS has the potential to explain learners’
individual characteristics which may influence their ability to
think scientifically.

1.1.1. Scientific Discovery as Dual Search
Klahr and Dunbar (1988) conceptualize scientific thinking
as searching within and between two problem spaces—the
hypothesis space and the experimental space. Each space is
distinguished by its own set of operations and representations.
In the hypothesis space, learners search their long-term memory
(i.e., prior knowledge) and/or metacognitive knowledge and
experiences to formulate hypotheses, while the experimental
space is guided by planning and investigating current hypotheses.
The learner must search through their hypothesis testing results
to inform the generation of alternative hypotheses in this space,
or make conclusions about the state of the phenomenon in
which they are studying. The model also suggests that in order
to initiate successful scientific thinking, learners must engage in
three key components. First, learners must gather information
before they can formulate a hypothesis. This requires searching
through memory and the environment in which the learner
is learning. Second, learners formulate a hypothesis for testing
based on their understanding. Last, once a hypothesis is formed,
the learner tests their current hypothesis and evaluates the results.
Based on the results, they can either come to a decision about
the phenomena they are studying (i.e., reject the hypothesis), or
use the results to formulate alternative testable hypotheses (i.e.,
accept the hypothesis; Klahr and Dunbar, 1988, p. 1). As such, the
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amount of time spent gathering information is contingent on the
learners’ prior knowledge about the content, where themore time
that learners spend gathering information, or searching through
memory, the less time they have to allocate to other components
of scientific thinking such as formulating and testing hypotheses.
Previous research using SDDS to study scientific thinking
found that a variety of individual characteristics contribute to
scientific thinking and thus impact subsequent learning and
performance outcomes (Lazonder and Harmsen, 2016), such
as prior knowledge about the domain (Dunbar and Klahr,
2012, chapter 34) and types of scaffolds used to guide learners
(Lazonder et al., 2010, p. 511; Mulder et al., 2011, p. 614; Taub
et al., 2020b, p. 1). However, major gaps persist as this work has
not been extended to problem solving with GBLEs.

1.2. Game-Based Learning Environments
GBLEs designed to foster scientific-thinking and problem-
solving skills use a range of game features that influence learners’
personally, such as enhancing their emotional engagement,
perceived agency, and interest in learning (Plass et al., 2015,
p. 258; Plass et al., 2020a, chapter 1). A number of meta-analyses
provide evidence that the design of GBLEs amplifies knowledge
and skill acquisition (Wouters et al., 2013, p. 249; Mayer, 2014;
Clark et al., 2016, p. 79) by (1) providing an incentive structure
such as granting rewards for completing tasks, (2) visual and
auditory aesthetics used to engage learners, and (3) a narrative
with clearly-defined rules that limit agency by requiring learners
to finish tasks to successfully complete the objective of the GBLE
[e.g., talking to a non-player character (NPC) to gather clues to
move forward with other tasks]. However, these meta-analyses
have not examined the role or impact of scientific thinking
with GBLEs, nor have they provided actionable multichannel
data collected during game-based learning to prescribe the most
important features that can be used to individualize scientific
thinking with GBLEs. Agency, or learners’ ability to control their
actions during learning (Bandura, 2001, p. 1), is a critical design
within GBLEs and has been shown to impact scientific thinking
(Taub et al., 2020b, p. 1). For instance, research has found that
while affording total agency—i.e., no restrictions to learners’
actions, results in increased engagement, motivation (Mayer,
2014; Shute et al., 2019, p. 59), and performance outcomes with
GBLEs (Loderer et al., 2020; Plass et al., 2020b), there are mixed
findings regarding agency and its impact on scientific thinking.
GBLEs that provide total agency require learners to effectively
engage in scientific thinking all on their own, where learners may
become distracted by other activities or seductive but extraneous
features that are unrelated to scientific thinking, such as exploring
the environment or trying to game the system. Because of this,
varying degrees of agency (e.g., partial vs. total agency) serve as an
implicit scaffolding technique for developing scientific-thinking
skills with GBLEs.

1.2.1. Agency That Supports Scientific Reasoning as

Inconspicuous Scaffolding
Implicit scaffolds, such as partial agency, support knowledge, and
skill acquisition by quietly changing the way learners interact
with information, tools, and game elements built into GBLEs. For

example, Crystal Island is a narrative-centered GBLE designed
to teach learners about microbiology using varying degrees of
agency (Taub et al., 2020b, p. 1). The total agency condition
affords learners absolute control over their actions during game-
based learning, while the partial agency condition requires
learners to engage in a predefined and fixed sequence of actions
(e.g., learners must read all books within each building before
testing hypotheses) with the assumption that the required in-
game actions are beneficial for effective scientific thinking (e.g.,
gathering information prior to generating hypotheses), learning,
and performance outcomes. Learners in the partial agency
condition, however, are still given some control by allowing them
to use tools at any point during game-based learning, such as
recording clues and formulating hypotheses using the scientific
worksheet. The no agency condition does not afford learners any
control over their actions as they watched a scientific-thinking
expert in 3rd person complete the game. A study investigating
the effect of agency on scientific thinking and performance
using Crystal Island found that learners in the partial agency
condition demonstratedmore scientific thinking in-game actions
and higher performance outcomes relative to learners in the total
or no agency conditions (Taub et al., 2020b, p. 1). However,
because scientific thinking was solely measured using in-game
actions, challenges exist as the authors cannot ensure learners
were actually thinking scientifically vs. completing actions to
move forward in the game. Other sources of data are critical to
inform if, when, and for how long learners engage in scientific
thinking during game-based learning.

1.3. Quantifying Scientific Thinking With
GBLEs
A study by Shute et al. (2016) captured scientific thinking using
the number of in-game actions learners initiated during problem
solving and found that in-game actions were associated with
successful problem solving and a strong predictor of performance
compared to other methodological approaches such as problem-
solving ability assessments (e.g., Raven’s Progressive Matrices;
Raven, 1941, p. 137; Raven, 2000, p. 1). Yet, majormethodological
and analytical limitations still exist in this work. Leveraging in-
game actions that suggest scientific thinking does not capture
information on whether the learner was actually thinking
scientifically about solving the problems. For example, scientific
thinking was operationally defined as learners’ in-game actions
that suggested analyzing resources. But can in-game actions
capture when learners analyzed resources without information
on where they were visually attending? Perhaps the learner was
aimlessly playing the game and interacted with a resource by
chance. A similar study by Taub et al. (2018) examined the
sequence of in-game actions to quantify successful scientific
thinking, where in-game actions were defined based on the
relevance of learners’ actions toward solving the problem during
game-based learning (e.g., testing food items and pathogens
relevant to the problem solution). Their results revealed that
learners were more effective in their scientific thinking if their
in-game actions suggested they tested fewer hypotheses that were
more relevant to the problem solution compared to learners
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who tested more hypotheses that were less relevant to the
problem solution (Taub et al., 2018, p. 93). However, the authors
used in-game actions alone to define scientific thinking, making
the assumption that all learners, regardless of prior knowledge
and other individual characteristics, are scientifically thinking
about solving the problem during game-based learning. Still,
can one be certain that when learners tested fewer hypotheses
more relevant to the problem solution, they did not accidentally
select a relevant hypothesis when using in-game actions data?
It is critical to investigate whether other sources of data might
supplement information captured via in-game actions suggesting
scientific reasoning. Without capturing more information on
what the learner is engaging with during game-based learning
and accounting for individual characteristics such as prior
knowledge, major gaps persist in research studying scientific
thinking during problem solving with GBLEs.

1.4. Eye-Tracking Methodology
Including other data channels to supplement in-game actions
during game-based learning may better inform when learners
are actively engaging in scientific thinking. Decades of literature
suggest eye-gaze data could be a promising direction in revealing
implicit cognitive processing like scientific thinking (Scheiter and
Eitel, 2017, p. 143). Adopting a cognitive psychology perspective,
where learners visually attend is based on the size of the retina.
The retina determines if and how much visual information
is available for processing and discloses the learners’ foci of
attention and thus what information is being processed (van
Zoest et al., 2017, p. 1555). A number of studies provide
empirical evidence supporting this perspective, such that where
participants look is indicative of their reasoning behaviors
such as scientific thinking (Plummer et al., 2017, p. 1426;
Miller Singley and Bunge, 2018, p. 445). For instance, Vendetti
et al. (2017) showed that participants’ saccades and fixations
data were indicative of reasoning. Specifically, they found that
participants’ eye movements revealed optimal strategies for
solving visual analogy problems when they were faced with
distracting stimuli. Their findings showed that when participants
attended to relevant relationships in stimuli, they were more
likely to solve the analogy problems compared to participants
who attended to distracting stimuli (Vendetti et al., 2017, p.
932). Several studies have also found that where learners visually
attend is related to their intention such that the eye-gaze data
predicted future in-game actions (Hillaire et al., 2009, p. 43;
Rayner, 2009, p. 1457; Huang et al., 2015, p. 1049; Park et al.,
2016, p. 796; Rajendran et al., 2018, p. 455) and reasoning
behaviors (Bondareva et al., 2013, p. 229). A study by Munoz
et al. (2011) analyzed eye-gaze data using an artificial neural
network to assess whether these data predicted future actions.
Their model achieved an accuracy rate above 83% for predicting
future actions based on eye-gaze positions on the screen, such
that the more often learners fixated on game elements within
the game, the more likely they were to initiate in-game actions
using those game elements in the future (Munoz et al., 2011, p.
47). A similar study by Huang et al. (2015) examined whether
eye-gaze data predicted future actions. Their model predicted
actions 1.80 s before the learner initiated the action based on

where they had previously fixated at an accuracy rate of 76%
(Huang et al., 2015, p. 1049). As such, do these findings transfer
to game elements in GBLEs which are intentionally designed to
foster scientific thinking? Specifically, can eye-gaze data inform
whether a learner is engaging in scientific thinking based on
relationships between eye-gaze data and in-game actions related
to scientific thinking with GBLEs? A study by Singh et al. (2018)
investigated whether there were differences between amodel with
in-game actions vs. a model with both eye-gaze data and in-
game actions collected during a multiplayer game in predicting
future in-game actions. Their results found that the model with
both eye-gaze and in-game actions data achieved a better fit
with 71% accuracy for predicting future actions compared to
the model with only in-game actions at 41% accuracy. The
aforementioned studies demonstrate how eye-gaze data might
inform scientific thinking in-game actions (Singh et al., 2018, p.
488). In sum, it is essential to use more than one data channel
to capture and analyze scientific thinking during game-based
learning. Eye-gaze data that supplements in-game actions may
inform if, when, and how long learners are thinking scientifically
during game-based learning.

1.5. Supporting Game-Based Learning
Using Multichannel Data
GBLEs allow researchers to capture rich data about complex
learning constructs (Taub et al., 2020a, chapter 9). Game-learning
analytics (GLA) are techniques developed for capturing, storing,
analyzing, and detecting critical information about what, when,
and how long learners’ interact with game elements such as
tools and other resources while solving problems during game-
based learning. GLA afford opportunities to guide instructional
prescriptions and decision making based on what learners are
doing to optimize and transform their learning experience
based on their multichannel data (Freire et al., 2016, p. 1;
Lang et al., 2017). As such, GLA opens a door for capturing
scientific thinking with GBLEs. Since theoretical models and
previous studies suggest individual characteristics of learners
play a crucial role in their ability to think scientifically such
as the degree of agency (Taub et al., 2020b, p. 1) and prior
knowledge about the content being studied during game-based
learning (Klahr and Dunbar, 1988, p. 1; Dunbar and Klahr,
2012, chapter 34), it is crucial to capture and analyze GLA to
advance the science of learning and guide instructional decision
making. A number of studies have used GLA to gain insight
into the role of individual characteristics to analyze its relation
to learning and performance outcomes. Giannakos et al. (2019)
used learners’ multichannel data to capture skill acquisition
while they played a pac-man game. Skill acquisition was defined
by motor-movement adaptation and decision making, where
learners were required to control four buttons on a keyboard
over the course of three sessions that increased in difficulty. Five
sources of data were collected: eye-gaze—i.e., pupil diameter,
fixation, saccades, and events (e.g., number of fixations, number
of saccades, etc.), keystrokes, EEG, facial expressions of emotions,
and wristband data—i.e., heart rate, blood pressure, temperature,
and electrodermal activity. Their findings showed that keystrokes
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demonstrated the lowest amount of model accuracy in predicting
skill acquisition at an error rate of 39%. But, by fusing
multichannel data, they achieved a 6% error rate in predicting
skill acquisition (Giannakos et al., 2019, p. 108). Similarly,
Alonso-Fernández et al. (2019) captured learners’ interaction
data during game-based learning tasks to examine its relation
to learning outcomes. By building predictive models using data-
mining techniques, they found that in-game actions capturing
how learners’ interacted with game elements during game-
based learning were 89.7% accurate in their predictive ability,
leaving approximately 11% of error. However, similar to the
aforementioned studies, they found that by combining both the
learners’ pre-test scores before game-based learning and their in-
game actions during game-based learning, their predictive model
demonstrated an accuracy rate of 92.6%, reducing its error rate to
<8% (Alonso-Fernández et al., 2019, p. 301). Similarly, Sharma
et al. (2020) captured and analyzed learners’ in-game actions
and physiological data—i.e., facial expressions of emotions, eye
tracking, EEG, and wristband data to predict learners’ effort
based on patterns in their multichannel data while they were
learning. Their results showed that HiddenMarkovModels could
detect learners’ effort from their multichannel data generated
during learning in a way that fostered individual instructional
prescriptions in real-time that were informed by patterns in
learning behaviors (Sharma et al., 2020, p. 480). In sum, these
studies highlight how important it is to analyze multichannel
data captured over a learning session to gain insight into skill
and knowledge acquisition with GBLEs. GLA techniques are
useful in tracking, modeling, and understanding what learning
processes are initiated and how each contributes to an individual
learner’s conceptual understanding of the domain, or the degree
at which a skill is acquired and mastered. The value of GLA is
emphasized based on its ability to reveal behaviors which may be
detrimental to a learner’s performance that go beyond in-game
actions captured via log files, offering opportunities to detect
maladaptive behaviors and intervene during learning activities
to redirect learners toward optimal learning, skill acquisition,
and performance outcomes. For example, if a learner has less
prior knowledge about game content, or is showing elevated time
spent examining game elements, then it could signal the learner’s
scientific thinking skills. Further, this information could guide
an instructional intervention tailored to the specific needs of the
learner based on their individual characteristics, in addition to
when, with what, how often and how long they are engaging
with game elements related to the overall objective of the learning
session. Yet, contrary to these promising directions, a number of
studies continue to use in-game actions alone to capture scientific
thinking with GBLEs (Shute et al., 2016, p. 106).

1.6. Current Study
In this study, we examined college students’ scientific thinking
with GBLEs to determine optimal features for personalizing
instruction during science learning. Current studies apply a
generalized methodological and analytical approach by only
accounting for performance and in-game actions logs to define
if, when, and how long learners think scientifically about solving
problems with GBLEs (Shute et al., 2016, p. 106; Smith et al.,

2019, p. 52; Taub et al., 2018, p. 93; Taub et al., 2020b, p. 1),
ignoring individual characteristics of learners that have been
shown to impact their ability to think scientifically during game-
based learning. To address the challenges mentioned above, we
investigated whether learners’ multichannel data were related to
scientific thinking during game-based learning and performance
outcomes. Specifically, the objective of our study was to examine
whether relationships existed between multichannel data—i.e.,
eye gaze, in-game actions, degree of agency, and pre-test and
post-test scores. Our research questions were grounded in SDDS
theory (Klahr and Dunbar, 1988, p. 1) and previous empirical
evidence related to modeling scientific thinking to examine
whether the proportion of time fixating on game elements related
to scientific reasoning, pre-test scores, and degree of agency
predicted the proportion of time interacting with game elements
related to scientific reasoning and post-test scores. Our research
questions and hypotheses are provided below:

Research Question 1: To what extent does the time
fixating and interacting with scientific reasoning related game
elements predict post-test scores after game-based learning,
while controlling for prior knowledge and degree of agency?
We hypothesize there will be predictive relationships between
the time interacting with scientific reasoning related game
elements and post-test scores after game-based learning,
while controlling for pre-test scores and degree of agency.
Our hypothesis is both grounded in Klahr and Dunbar
(1988) SDDS theory and previous empirical evidence that
multichannel data generated over a learning session [e.g.,
(Alonso-Fernández et al., 2019, p. 301), prior knowledge
(Dunbar and Klahr, 2012, chapter 34), and the degree of
agency (Lazonder et al., 2010, p. 511; Mulder et al., 2011,
p. 614; Taub et al., 2020b, p. 1)] has been related to
performance outcomes.
Research Question 2: To what extent does time fixating
on scientific reasoning related game elements predict time
interacting with scientific reasoning related game elements
during game-based learning, while controlling for pre-test
scores and degree of agency? We hypothesize there will
be predictive relationships between the time fixating on
scientific reasoning related game elements and the time
interacting with scientific reasoning related game elements
during game-based learning, while controlling for pre-test
scores and degree of agency. Our hypothesis is based on
empirical evidence suggesting that eyemovements are related
to learners’ cognitive processing and future in-game actions
(Hillaire et al., 2009, p. 43; Huang et al., 2015, p. 1049; Park
et al., 2016, p. 796; Singh et al., 2018, p. 488).
Research Question 3: To what extent does the time fixating
on non-scientific reasoning related game elements predict the
time interacting with non-scientific reasoning related game
elements during game-based learning, while controlling for
pre-test scores and degree of agency? We hypothesize there
will be predictive relationships between the time fixating
on non-scientific reasoning related game elements and
time interacting with non-scientific reasoning related game
elements unrelated to scientific reasoning during game-based
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learning, while controlling for pre-test scores and degree
of agency. Our hypothesis is based on empirical evidence
suggesting that eye movements are related to learners’
cognitive processing and future in-game actions (Hillaire
et al., 2009, p. 43; Huang et al., 2015, p. 1049; Park et al., 2016,
p. 796; Singh et al., 2018, p. 488).

2. MATERIALS AND METHODS

2.1. Participants and Materials
A total of 138 learners were recruited from three large, public
universities in North America. For this paper, a subset of 68
participants (n = 68; 68% female, age: M = 20.01, SD = 1.56)
were included in our analyses because they met the inclusion
criteria: complete eye-tracking, log file, and performance data
and were randomly assigned to either the total agency (n =

41) or partial agency conditions (n = 27). Of the subsample,
the majority identified as Caucasian (75%), while the remaining
identified as Asian, Black, Hispanic or Latino, and Other.
Additionally, the majority of the subsample reported rarely
playing video games (37%), while the remaining reported
occasionally (24%) or frequently (16%), or very frequently (9%)
playing. Most participants reported an average level of video
game playing skill (41%), whereas others reported none at all
(13%), limited skills (21%), skilled or very skilled (25%). Sixty-
three percent of participants reported playing video games 0–2
h per week (63%), while the remaining reported playing 3–4 h
(16%), 5–10 h (7%), 10–12 h (12%), or more than 20 h (1%)
per week. This study was approved by the Institutional Review
Board prior to recruitment and informed written consent was
obtained prior to data collection. To measure knowledge about
microbiology, a 21-item, 4-option multiple choice assessment
was administered before and after participants finished the
game, regardless of whether they had solved the mysterious
illness plaguing the island. Participants answered between 6
and 18 correct items (Med = 12, M = 57%, SD = 0.13)1

on the pretest, and between 10 and 19 correct items (Med =

15, M = 72%, SD = 0.12) on the post test. The assessments
contained 12 factual (e.g., “What is the smallest type of living
organism?”) and nine procedural questions (e.g., “What is the
difference between bacterial and viral reproduction?”). Several
self-report questionnaires were also administered to participants
before and after game-based learning to gauge their emotions,
motivation, self-efficacy, and cognitive load2. Scientific thinking
was measured using a combination of log files and eye-gaze
behaviors (see Coding and Scoring subsection for details). Game
play duration ranged from 69 to 94 min (M = 83, SD= 17.5).

2.2. Experimental Design
Crystal Island was designed with three experimental conditions:
(1) total agency where participants had the autonomy to make

1The mean was calculated using a ratio score of total correct items over total items
on the pre/post-test assessments. Median was reported for the total number of
correct items.
2We do not provide information about the self-report questionnaires because
they were not included in the analyses. Readers are encouraged to email the
corresponding author to request information about the scales administered.

their own decisions during game-based learning without any
restrictions, (2) partial agency where participants had limited
autonomy to make their own decisions during game-based
learning due to restrictions around the sequence of buildings
they could go to and tools they could use, and (3) no agency
conditions where participants watched in third-person as another
player worked toward identifying the mysterious pathogen in
3rd person. Upon beginning the game, participants within the
total agency condition could go to any of the buildings and open
whichever tool they deemed important toward identifying the
unknown pathogen at any time they chose, while participants
in the partial agency condition were required to visit the
nurse first and discuss the symptoms the inhabitants were
experiencing before being required to follow a “golden path”
of steps to solve the mystery. The partial agency condition was
designed to optimize scientific-reasoning actions by requiring
participants to first gather information related to the unknown
pathogen (e.g., symptoms), read specific books and research
articles touching on types of pathogens, and then experimentally
test their generated hypotheses. The no agency condition
was designed as a means to model what scientific-reasoning
actions should look like during game-based learning with
Crystal Island.

2.3. Crystal Island
Crystal Island is a GBLE designed to foster and improve
scientific-reasoning skills through an objective-based quest
during complex problem solving. The science content in the
game aligns with the Standard Course of Study Essential
Standards for Eighth-Grade Microbiology (McQuiggan et al.,
2008, p. 510). The problem-solving activities emphasize the
practice of scientific inquiry as called for by the Next Generation
Science Standards, and they also align with standards from
the Common Core State Standards for English Language Arts
on Reading: Informational Text. Participants were tasked with
identifying a mysterious pathogen infecting inhabitants in a
research camp on an isolated island (Figure 1, adopting the
role of a Center for Disease Control and Prevention agent to
identify an unknown pathogen that infected a team of researchers
(Rowe et al., 2011, p. 115). Participants were instructed to
provide an accurate diagnosis and treatment solution by testing
possible transmission sources (e.g., food items such as eggs and
cheese), talking to NPCs on the island about their expertise or
symptoms, and collecting information through resources (e.g.,
books and research articles) scattered around the island in order
to complete the game. During the game, participants moved
through a variety of buildings, each containing different game
elements providing information related to pathology including
NPCs, research articles, books, posters, food items, and devices
to test hypotheses that foster scientific thinking. Specifically,
Crystal Island was built with a (1) dining hall (where participants
can collect food items and interact with the cook—i.e., NPC
to assess which food has been served recently; see Figure 2)
where an orange is illustrated as a food item); (2) laboratory
(where participants can test food items picked up throughout
the game to assess whether they have been infected with a
pathogen; see Figures 1, 3; (3) infirmary (where participants can
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FIGURE 1 | Crystal Island environment. (Top left) Living quarters; (Top right) Laboratory; (Bottom left) Island; (Bottom right) Dormitory.

FIGURE 2 | Generating hypotheses related game elements. (Left) Diagnostic worksheet. (Right) Dining hall where participants can select food items; circled game

elements = Areas of Interest for a food item and backpack (how participants access the diagnostic worksheet).

interact with a nurse and sick patients who provide information
about their symptoms; see Figures 1, 4); and (4) dormitory
(Figure 1) as well as (5) living quarters (where participants
can interact with other team members in the research camp;
Figure 1). Using the information gathered from the various
island locations, participants can record clues and hypotheses for
later testing using a range of tools provided during learning with
Crystal Island.

2.3.1. Tools Designed to Foster Scientific Thinking
Six tools were built into Crystal Island to foster scientific
thinking and help participants navigate the game challenges
and mystery. First, books, posters, and research articles (see
Figure 1) were scattered around the island and served as some
of the main sources of information about microbiology and
pathology. The books, articles, and posters were originally written
by a former middle-school science teacher and ranged in topic,
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FIGURE 3 | Experimental testing related game elements. (Left) Concept matrix content and feedback (displayed in red when participant has incorrect answers).

(Right) Scanner for testing food items in laboratory.

FIGURE 4 | Gathering information related game elements. (Left) Book; (Top right) Poster; (Bottom right) Sick patient (non-player character) in infirmary.

length, and text difficulty. Each of the sources explained distinct
characteristics related to certain types of pathogens and the ways
to treat (1) bacteria, (2) viruses, (3) parasites, (4) fungi, and (5)
genetic diseases. Pathogens covered in books, research articles
and posters included influenza, tapeworm, anthrax, salmonella,
E. coli, polio, ebola, and sickle-cell anemia. Participants within
the partial agency condition were required to “read” every book,
poster and research article available to them. However, it is
important to note that the system counted a book, poster, and
research article as read if it was opened (for however brief).
While log files also indicated how long the book remained

open, participants could have not actually chosen to read, but
instead looked elsewhere on the screen. Participants within the
total agency condition, however, were not required to read
any of the books, posters, or research articles if they chose
not to. Within books and research articles, participants had an
opportunity to test their understanding of the new information
they had just read about using a concept matrix (see Figure 3).
Concept matrices were presented as a matrix where participants
matched pathogen types (e.g., virus) to their associated and
distinct characteristics (e.g., reproduce quickly in living host
cells). Participants were given a total of three attempts to provide
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FIGURE 5 | Experimental setup and data channels captured during game-based learning.

correct information in the mapping exercise. If participants failed
to answer correctly within the first 3 trials, the correct answers
were displayed to them (see Figure 3). Participants within the
partial agency condition were required to successfully complete
(or at least attempt three times) every concept matrix. This
was done with hopes participants would be more likely to read
all of the information available within the game and therefore
increase their microbiology knowledge and make more informed
deductions and hypotheses regarding the mystery. However,
given that the correct answer was provided to participants
after three failed attempts, participants could be incentivized to
game the system for non-relevant (or uninteresting) books and
research articles. Because participants within the total agency
condition were not required to complete concept matrices if they
chose not to, it is possible they were less likely to game the
system as there was no reward for doing so or punishment for
not completing them. Participants also had access to a scanner
in the laboratory building (see Figure 3), where they could test
food items they hypothesized as transmitting the pathogen to
the sick researchers. During the game, participants were also
provided with a diagnosis worksheet (see Figure 2) that allowed
them to record information related to (1) different types of
pathogens and their distinct characteristics; (2) symptoms the
sick inhabitants were experiencing; and (3) hypotheses about the
transmission source of the pathogen (e.g., orange, milk, eggs).
For example, participants could keep track of food items they
had previously tested to foster their scientific thinking (e.g., if
cheese had negative results for bacteria, participants could deduce

either the cheese was not the source of the illness or bacteria
was not the pathogen). Items did not have to be scanned in
order to correctly solve the mystery, however it was available to
test hypotheses generated from other clues. Participants within
the partial agency condition were required to scan items, while
those in the total agency condition could choose if they wanted
to. While participants could fill out and edit the diagnosis
worksheet at any time during the game, they had to submit an
accurate diagnosis, transmission source, and treatment solution
to successfully solve the mystery and complete Crystal Island.

2.4. Procedure
When participants arrived at the laboratory, a researcher
confirmed their identity and ensured no clothing, hair, or
glasses (including eye conditions such as astigmatisms) would
interfere with the eye-tracker calibration and data collection on
eye movements. First, participants completed informed, written
consent and then were instrumented with an electro-dermal
bracelet and calibrated to the eye tracker and facial expressions
of emotions software (see Figure 5 for experimental setup)3.
After successful calibration, participants were instructed to
complete several questionnaires gauging motivation, emotions,
and self-efficacy as well as a 21-item, multiple choice pre-test
assessment on microbiology. Next, instrumented participants

3For this study, we only analyzed data collected via the eye-tracker, performance
assessments, and keyboard stroke/mouse clicks. As such, we do not provide
information about other data channels, but readers are encouraged to email the
corresponding author to request more information.
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started learning with Crystal Island while we collected their
multichannel data. On average, it took participants 81 min
(SD = 23 min) to identify the unknown pathogen and a
correct treatment solution. If participants did not solve the
mysterious illness within 90 min, they were exited from
the game. Immediately after, participants were instructed to
complete several questionnaires gauging motivation, emotions,
and presence in addition to a 21-item, multiple choice post-
test assessment on microbiology. Upon completing the post-test
session, participants were paid $10/hr (up to $30), debriefed, and
thanked for their time and participation.

2.5. Apparatus
2.5.1. Eye-Gaze Behaviors
To record eye-gaze behaviors, an SMI EYERED 250 eye tracker
(Center, 2014) was used in this study and detected pupil
and fovea location using infrared light. We used a nine-point
calibration and configured the eye tracker to capture eye-gaze
data at a sampling rate of 30 Hz, capturing relatively small eye
movements at an offset of <0.05 mm. Eye-gaze fixations were
processed in iMotions software (iMotions, 2014), which provided
granular post-hoc analysis for creating dynamic areas of interest
(AOIs) around game elements related to scientific reasoning (e.g.,
time spent fixating on complex text was defined as information
gathering; Figure 4). We defined two types of AOIs: (1) around
game elements in which the learner was not interacting with (e.g.,
fixating on a book from a distance), and (2) around the content of
the game elements in which the learner was interacting with (e.g.,
opening a book and fixating on the text). These two types of AOIs
distinguished between the eye-gaze and interaction variables,
where the AOIs capturing interaction content was used to define
when learners were engaging with materials by combining the
data with in-game actions.

2.5.2. In-game Actions
In-game actions were recorded and time-stamped in log files
when participants used the mouse and/or keyboard for analyses.
Specifically, this data channel provided event- and time-based
actions over the course of game-based learning. Throughout this
paper, we refer to this data channel as “interaction elements” since
it signaled when participants interacted with game elements.

2.6. Coding and Scoring
2.6.1. Performance Measures
Prior knowledge and knowledge acquired during game-based
learning was measured by creating a ratio of correct responses
over total items on the pre- (M = 0.57, SD = 0.13) and post-test
assessments (M = 0.72, SD= 0.12).

2.6.2. Fixations and Interactions With Game Elements
Game elements were categorized as either related to scientific
reasoning (e.g., books, research articles, etc.) or non-scientific
reasoning (e.g., doors, furniture, etc.) grounded within Klahr
and Dunbar (1988) SDDS theory. Scientific reasoning game
elements were further separated into three variables: (1) gathering
information, (2) generating hypotheses, and (3) experimentally
testing hypotheses. To define scientific reasoning based on

learners’ interacting with game elements, we aligned in-game
actions with eye-tracking data in order to measure two behaviors:
(1) when a participant fixated on game elements, but did not
interact with same game elements, and (2) when a participant
fixated and interacted with game elements at the same time
(i.e., interacting and fixating on game elements to ensure their
engagement with game elements). The time a participant spent
interacting4 with a game element required that the log file not
only show that the game element was interacted with (e.g., a
book opened, non-player character asked a question, or the
diagnosis worksheet edited), but also that the participant was
fixating on the content of the game element with which they
were interacting with (see Figure 6). For example, if a participant
fixated on a book on a table but did not touch it, this was
considered a fixation. If they opened the book, but the eye-
tracking data did not suggest they fixated on the book’s content
(e.g., looked elsewhere, opened and closed the book quickly,
etc.), this was not considered interacting with a game element.
However, if participants opened the book and fixated on the
content, this was counted as the participant interacting with the
book. Interactions were defined in this manner to ensure that
the participant was engaging with the game element and so that
we did not bias our analysis to consider interactions where the
participant was not fixating on the content (i.e., accidentally
interacting with a game element). Additionally, it helped prevent
making the assumption that log files were indicative of scientific
reasoning—that is, we do not have to assume that all in-game
actions captured within the log files are meaningful. As such,
the eye-tracking data helped augment and contextualize the log
files to make a more meaningful interpretation and highlights
the novelty of our approach compared to methods of only using
log files. This is especially important for the partial condition
participants whowere required to complete certain actions before
moving on. While the log file might alone indicate participants
completed all actions in the partial agency condition, eye-
tracking might illustrate other behaviors such as gaming the
system. Additionally, for participants within the total agency
condition, we would be able to determine if some actions were
more exploratory search actions vs. scientific reasoning actions.
Further, fixations were defined using gaze points within 1 degree
visual angle exceeding at least 250 ms (Salvucci and Goldberg,
2000, p. 71) on AOIs described in section 2.5.1. Next, the fixations
were aggregated across different element AOIs. Additionally,
the time a participant spent fixating or interacting with game
elements were aggregated across the categories described above
[i.e., scientific reasoning elements (further grouped as either
gathering information, generating hypothesis, or experimentally
testing hypothesis) and non-scientific reasoning elements]. We
then used these categories to find the proportion of time either
fixating or interacting with elements compared to total time
spent trying to solve the mysterious illness with Crystal Island.
This was done to help control for the time differences produced
by condition requirements of the partial agency group. It is

4Throughout this paper, we use interaction to signal that participants were not
only interacting with game elements via in-game actions, but also fixating on game
elements during their interaction with the game element via eye gaze.
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FIGURE 6 | Circles indicate eye fixations while numbers indicate sequence of fixations. (Left) Dormitory, where participant is interacting with a non-player character

(NPC) based on agreement between fixation and log files (i.e., interaction with NPC). (Top right) Poster, where participant is interacting with a poster based on

agreement between eye-gaze and log files (i.e., interaction with poster). (Bottom right) Book, where participant is interacting with a book based on agreement

between eye-gaze and log files (i.e., interaction with book).

important to note that the AOIs of game elements used to
define fixations were different than the AOIs used to define
interactions (see Tables 1, 2) which outline all of the various
AOIs that were used to distinguish and categorize interactions
and fixations with elements for our analysis). This is due to new
visuals being shown when items were clicked on. For example,
clicking on a book opened it up to content that was previously
not visible. As such, fixating on a book was defined as a fixation
on a closed book, while an interaction with a book was when
a participant opened a book and fixated on the content in
the book.

2.7. Statistical Analyses
We cleaned and processed our data in R (Version 3.6.2;
R Core Team, 2013) using “read_xl” (Wickham and Bryan,
2017), “dplyr” (Wickham et al., 2018), and “reshape2” (Wickham
et al., 2007, p. 1) packages for the data wrangling, manipulation,
and melting features. Utilizing the “bestNormalize” package
(Peterson and Cavanaugh, 2019, p. 1) and “plot” function from
the “base” package (R Core Team, 2013), non-normally
distributed variables were transformed into a normal
distribution. Specifically, we used log, square root, and ordered
quartile transformations, and in some cases, standardization. All
variables were normalized or standardized with the exception of
pre- and post-test ratio scores as these were normally distributed.
Next, 12 participants were eliminated as they demonstrated

TABLE 1 | Fixations on game elements related to scientific and non-scientific

reasoning.

Variables Areas of interest on game

elements

Operational definitions

Information

gathering

All books, research articles,

posters, and non-player

characters

Hypothesis

generation

Food items, diagnosis

worksheet, and backpack

Experimental

testing

Concept matrices and scanner Time fixating on game

elements for more than 250

ms without selecting,

opening, editing, or viewing

content of game

elements/total time during

game-based learning

Non-scientific

reasoning

Doors, buildings, trees, plants,

pots, settings, rocks, keys, menu

icons, lights (e.g., bulbs), turbine,

fire pit, treads, trophies, water,

kitchen, appliances (e.g.,

refrigerator), lab equipment (e.g.,

flasks), windows, and furniture

significant outlying observations via Grubb’s test (Grubbs,
1969, p. 21). Upon building the models, we used the “stepAIC”
function from the “MASS” package to conduct stepwise model
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selection using Akaike information criterion (AIC) for our
first research question (Venables and Ripley, 2002, p. 271).
The “summary” function from the “base” package was used to
access object and model statistics, while the “ggplot2” package
was used to visualize models and corresponding relationships
among variables (Wickham, 2016). To visualize interaction
terms, packages “tidyverse” (Wickham et al., 2019, p. 1686),
“sjPlot” (Lüdecke, 2018b), and “sjmisc” (Lüdecke, 2018a, p. 754)
were used. To probe the relation between interactions, we used
the package, “interactions,” by calling the “probe_interaction”
function (Long, 2019).

3. RESULTS

3.1. Preliminary Analyses
To examine the potential effect of the experimental manipulation
on the results (i.e., level of agency), we conducted independent
two-sample t-tests on all variables to assess if there were

TABLE 2 | Interactions with game elements related to scientific and non-scientific

reasoning.

Variables In-game actions with

overlapping areas of interest

Operational definitions

Information

gathering

All book content, research article

content, poster content, and

non-player character dialogue

Hypothesis

generation

Food items scanned and

diagnosis worksheet

Time fixating on game

elements for more than 250

ms while selecting, opening,

editing, or viewing content

of game elements/total time

during game-based learning

Experimental

testing

Concept matrix content, concept

matrix feedback, and scanner

Non-scientific

reasoning

Movement to different locations

during game-based learning

differences between conditions. Analyses revealed no significant
differences in both pre- and post-test scores between conditions
(ps > 0.05) and so we did not include condition to
maintain a parsimonious model for the first research question.
For the second and third research questions, we found
significant differences in time interacting with elements related
to gathering information, t(60) = −3.09, p = 0.003, and
generating hypotheses, t(50) = 2.29, p = 0.026, between
experimental conditions and so we included condition in
each equation (ps < 0.05; see Figure 7, Table 3). For research
questions 2–3, we did not use the AIC method to select
the best fit model because the predictor variables were
empirically (i.e., literature suggests prior knowledge and agency
impacts scientific thinking), theoretically (i.e., the SDDS model
suggests prior knowledge impacts scientific thinking), and
statistically justified (e.g., significant differences in eye-gaze
and interaction data between conditions; see section 1.6 for
more details).

3.2. To What Extent Does Time Fixating and
Interacting With Scientific Reasoning
Related Game Elements Predict Post-test
Scores After Game-Based Learning, While
Controlling for Pre-test Scores?
To examine whether relationships existed between proportion
of time fixating and interacting with game elements related
to scientific reasoning during game-based learning and post-
test scores, while controlling for pre-test scores, we used
AIC stepwise selection. Separate models for fixations and
interactions with game elements were built, because including
these data in the same equation to model performance created
multicollinearity issues (VIF > 10). The first model was built
using eye-gaze data to assess its relation to post-test scores
while controlling for pre-test scores. A baseline model was
determined using stepwise selection via AIC (Akaike, 1974, p.
716). The AIC method revealed that the best model was a

FIGURE 7 | Significant differences in proportion of time spent interacting with elements related to gathering information and generating hypotheses between

experimental conditions; 0 = full agency, 1 = partial agency.
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TABLE 3 | Descriptive statistics.

Variables Condition Mean

(SD)

Median 1st

Quartile

3rd

Quartile

Information

gather AOI

1 0.03 (0.03) 0.02 0.014 0.042

0 0.02 (0.02) 0.02 0.007 0.038

Information

gather LOG

1 0.12 (0.06) 0.1 0.070 0.152

0 0.08 (0.05) 0.08 0.041 0.113

Hypothesis

generate AOI

1 0.04 (0.03) 0.02 0.012 0.044

0 0.03 (0.03) 0.03 0.017 0.041

Hypothesis

generate LOG

1 0.09 (0.03) 0.07 0.061 0.106

0 0.09 (0.03) 0.09 0.068 0.111

Experimental

test AOI

1 0.00 (0.00) 0.00 0.000 0.003

0 0.00 (0.00) 0.00 0.000 0.001

Experimental

test LOG

1 0.21 (0.09) 0.18 0.142 0.279

0 0.22 (0.1) 0.19 0.145 0.261

Pre-test scores 1 0.56 (0.14) 0.62 0.476 0.667

0 0.55 (0.13) 0.52 0.48 0.62

Post-test

scores

1 0.73 (0.12) 0.76 0.667 0.810

0 0.70 (0.13) 0.71 0.62 0.76

Total game play 1 5586.15

(967.59)

5528 4616 6247

0 4556.51

(895.45)

4345 3974 5098

Condition: 1 = partial agency, 0 = full agency.

simple linear regression equation, where pre-test scores were
included as the only predictor variable (see Table 4). The fitted
model estimated that average post-test scores increased by
0.43 points for each correct item on the pre-test assessment,
where pre-test scores explained approximately 22% of the
variance in post-test scores. As such, time spent fixating
on game elements related to scientific and non-scientific
reasoning during game-based learning were unrelated to post-
test scores (ps > 0.05).

The second model was built using interaction with elements
data to assess its relation to post-test scores, while controlling
for pre-test scores. The AIC method indicated that the best
model fit was a multiple linear regression equation, where pre-
test scores and proportion of time interacting with game elements
related to gathering information and generating hypotheses
were included as predictor variables (see Table 5). The fitted
model estimated that average post-test scores increased by 0.53
points for each correct answer on the pretest and increased
by 0.24 points for each second increase based on a three-
way interaction between proportion of time interacting with
game elements related to gathering information and generating
hypotheses, as well as pre-test scores correct item on the pre-
test assessment. These predictors explained approximately 30%
of the variance in post-test scores (see Figure 8). To probe
the complexity of the three-way interaction relationship, we
used a robust statistical technique known as the Johnson-
Neyman interval (Johnson and Neyman, 1936, p. 57). The
Johnson-Neyman technique relies on the range of values of
the moderators (i.e., time spent interacting with elements

TABLE 4 | Modeling relationships with post-test scores; LOG, fixation, and

interactions with game elements; AOI, fixations on game elements without

interaction; *p = 0.05; ***p < 0.05.

Predictor variables β Standard error t

Information gathering AOI — — —

Hypothesis generation AOI — — —

Experimental testing AOI — — —

Non-scientific reasoning AOI — — —

Condition — — —

Pre-test scores 0.43*** 0.10 4.48

Pre-test*Condition — — —

Adjusted R2 0.222

F 20.08***

Information gathering LOG — — —

Hypothesis generation LOG −0.21* 0.11 −1.90

Experimental testing LOG — — —

Non-scientific reasoning LOG — — —

Condition — — —

Pre-test scores 0.53*** 0.11 4.86

Pre-test*Condition — — —

Pre-test* Information*Hypothesis 0.24*** 0.12 2.03

Adjusted R2 0.296

F 5.024***

TABLE 5 | Johnson-Neyman simple slope analysis modeling relationships with

post-test scores.

Moderating variables β Standard error t

PRE-TEST SCORES

Hypothesis generation −1 SD

Information gathering −1 SD 0.76*** 0.25 2.99

Information gathering mean 0.47*** 0.16 2.91

Information gathering +1 SD 0.18 0.26 0.70

Hypothesis generation mean

Information gathering −1 SD 0.58*** 0.16 3.77

Information gathering mean 0.52*** 0.11 4.75

Information gathering +1 SD 0.46*** 0.17 2.67

Hypothesis generation +1 SD

Information gathering −1 SD 0.41*** 0.13 3.04

Information gathering mean 0.57*** 0.15 3.90

Information gathering +1 SD 0.73*** 0.23 3.17

related to gathering information and generating hypotheses),
where the slope of the predictor (i.e., pre-test scores) is
significant compared to non-significant at an alpha level of
0.05. In our analysis, we considered pre-test scores as our focal
predictor and proportion of time interacting with game elements
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FIGURE 8 | Three-way interaction between pre/post-test scores, proportion of time interacting with game elements related to gathering information and generating

hypotheses.

related to gathering information and generating hypotheses
as moderators hypothesized to affect the relationship between
pre- and post-test scores (see Figure 8 for visualizations of
pre- and post-test relationships as the moderators change
from −1 standard deviation, to the mean, and +1 standard
deviation). Refer to Table 5 for a breakdown of how the
relationships between post- and pre-test scores change based
on the proportion of time interacting with game elements
related to gathering information and generating hypotheses. In
sum, the analysis suggested a significant positive relationship
between pre- and post-test scores was present, except when
participants spent <1 standard deviation (SD = 0.025) away
from the mean (M = 0.083) generating hypotheses, but
more than 1 standard deviation (SD = 0.061) away from
the mean (M = 0.102) when gathering information. In other
words, when participants spent a larger proportion of time
during game-based learning gathering information compared
to the relative average, and spent a smaller proportion of
time generating hypotheses compared to the relative average,
the relationship between pre- and post-test scores was not
significant (p > 0.05).

3.3. To What Extent Does Time Fixating on
Scientific Reasoning Related Game
Elements Predict Time Interacting With
Scientific Reasoning Related Game
Elements During Game-Based Learning,
While Controlling for Pre-test Scores and
Degree of Agency?
To examine whether relationships existed between proportion of
time fixating on game elements related to scientific reasoning
and the proportion of time interacting with game elements
related to scientific reasoning during game-based learning, while
controlling for pre-test scores and experimental conditions,
we built multiple linear regression equations. Specifically, we
built separate models for each scientific-reasoning process:
information gathering, hypothesis generation, and experimental
testing, since including these variables in the same equation
created major multicollinearity issues (VIF > 10). For each
model, fixation variables were included as predictors while
interaction with elements were included as targets. First, we built
a model to examine relationships between the proportion of time
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fixating on game elements related to gathering information and
interacting with game elements related to gathering information,
while controlling for pre-test scores and experimental conditions.
A significant multiple linear regression equation was found,
F(7, 60) = 3.243, p < 0.001, for the proportion of time interacting
with game elements related to gathering information between
total and partial agency conditions and a two-way interaction
between pre-test scores and proportion of time fixating on
game elements related to gathering information (see Table 6 for
beta coefficients and adjusted R2). The fitted model estimated
that the average proportion of time interacting with game
elements related to gathering information decreased by 0.03 if
participants were assigned to the total agency condition relative
to the partial agency condition. We also found a significant
two-way interaction, where the relationship between interactions
and fixations for elements related to gathering information
was affected by pre-test scores, such that the lower pre-test
score (e.g., 44% correct items on pre-test) revealed a positive
relationship between interactions and fixations for elements
related to gathering information. However, the higher pre-test
scores revealed a negative relationship between interactions and
fixations for elements related to gathering information. Together,
the predictors explained approximately 19% of the variance in
the proportion of time interacting with game elements related to
gathering information during game-based learning.

Our second model was built to examine relationships between
the proportion of time fixating on game elements related
to gathering information via interactions and fixations for
elements related to generating hypotheses, while controlling
for pre-test scores and experimental conditions. A significant
multiple linear regression equation was found, F(7, 60) = 2.225,
p = 0.044, suggesting relationships between interactions and
fixations for elements related to generating hypotheses and
experimental conditions (see Table 6 for beta coefficients and
adjusted R2). The fitted model estimated that the average

TABLE 6 | Modeling in-game actions related to scientific reasoning; *p = 0.05;

***p < 0.05.

Predictor variables β Standard error t

Information gathering AOI — — —

Condition −0.03*** 0.12 −0.22

Pre-test scores — — —

Pre-test*Condition — — —

Pre-test* Information AOI −0.26*** 0.12 −2.20

Adjusted R2 0.189

F 3.235***

Hypothesis generation AOI 0.96 0.53 1.807

Condition −0.02*** 0.04 −0.425

Pre-test scores — — —

Pre-test*Condition — — —

Pre-test*Hypothesis AOI — — —

Adjusted R2 0.113

F 2.23***

proportion of time interacting with game elements related
to generating hypotheses increased by 0.96 for each second
increase in the proportion of time fixating on game elements
related to generating hypotheses (see Figure 9), as well as the
average proportion of time spent interacting with elements
related to generating hypotheses decreased by 0.02 if participants
were assignment to the partial agency condition compared to
the total agency condition. Together, the predictors explained
approximately 11% of the variance in the proportion of time
interacting with game elements related to generating hypotheses
during game-based learning. Finally, our last model was built
to examine relationships between interactions and fixations for
elements related to experimental testing, while controlling for
pre-test scores and experimental conditions. We did not find a
significant multiple linear regression equation, suggesting there
were no relationships between interactions and fixations for
elements related to generating hypotheses, while controlling for
pre-test scores (p > 0.05). In sum, our analyses revealed a
significant two-way interaction where pre-test scores moderated
relationships between interactions and fixations for elements
related to gathering information. We also found significant
relationships between experimental conditions and interactions
and fixations for elements related to generating hypotheses. We
did not find relationships between interactions and fixations for
elements related to experimental testing (p > 0.05).

3.4. To What Extent Does Time Fixating on
Non-scientific Reasoning Related Game
Elements Predict Time Interacting With
Non-scientific Reasoning Related Game
Elements During Game-Based Learning,
While Controlling for Pre-test Scores and
Degree of Agency?
To examine whether relationships existed between interactions
and fixations for elements related to non-scientific reasoning,
while controlling for pre-test scores and experimental condition,
we built a multiple linear regression equation. For this model,
the fixations on elements was included as a predictor while
interactions with elements was included as the target. Analyses
suggested there were no significant relationships between
interactions and fixations for elements related to non-scientific
reasoning, while controlling for pre-test scores and experimental
condition (ps > 0.05).

4. DISCUSSION

In this study, we examined scientific thinking with GBLEs
to determine optimal features for individualizing instruction
during science learning. Specifically, the objective of our study
was to examine whether learners’ multichannel data generated
during game-based learning with Crystal Island were related to
scientific thinking and performance and could be used to guide
individualized instruction with GBLEs.
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FIGURE 9 | Two-way interaction where pre-test scores moderate relationships between proportion of time interacting with and fixating on elements related to

gathering information.

4.1. Research Question 1
Our first research question examined relationships between
fixations and interactions for game elements related to scientific
reasoning and post-test scores, while controlling for pre-
test scores. The predictive models suggested there were no
relationships between fixation variables related to scientific
reasoning and post-test scores (p> 0.05). However, the predictive
models did reveal a significant three-way interaction between
pre-test scores, interactions with game elements related to
gathering information and generating hypotheses during game-
based learning, and post-test scores. Specifically, the model
suggested interactions with game elements related to gathering
information and generating hypotheses moderated relationships
between pre- and post-test scores. We found that when holding
interactions for game elements related to gathering information
and generating hypotheses constant at various increments—
i.e., at mean − 1 SD, mean, mean + 1 SD; see Figure 8),
the relationships between pre- and post-test scores changed.
For example, when learners spent more time, or an average
proportion of time generating hypotheses, the proportion of
time they spent gathering information positively influenced
relationships between pre- and post-test scores. However, when
the learner spent more time gathering information and less
time generating hypotheses, the relationships between pre- and

post-test scores were no longer significant (p> 0.05). This finding
suggested that when learners spend a higher proportion of
time gathering information and less time generating hypotheses
during game-based learning captured by combining both eye-
gaze and in-game actions, it was detrimental to performance
regardless of how much prior knowledge learners had brought
to the learning session. These findings are partially consistent
with our hypothesis such that there were relationships between
interactions for game elements related to scientific reasoning
and post-test scores based on empirical studies (Lazonder and
Harmsen, 2016, p. 681; Alonso-Fernández et al., 2019, p. 301;
Giannakos et al., 2019, p. 108; Sharma et al., 2020, p. 480) and
SDDS theory (Klahr and Dunbar, 1988, p. 1); however, since
no relationships between fixations on game elements related
to scientific reasoning alone and post-test scores were found,
this was inconsistent with previous literature (Alonso-Fernández
et al., 2019, p. 301). We would like to emphasize that interaction
data were only included in our models if eye-gaze data suggested
that while learners were interacting with elements via log files,
they were also fixating on those same elements (see section 2.6.2).
While we did not find relationships when only including eye-
gaze data, a possible explanation could be that when assessing
eye-gaze data alone (i.e., without considering interaction data),
it is too granular to capture its relation to performance. Instead,
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other modalities of data generated during game-based learning
may need to supplement statistical models in order to detect
an effect or relationship, which has been a consistent finding
across a number of GLA studies (Giannakos et al., 2019, p. 108;
Sharma et al., 2020, p. 480). Future research should look
toward including data channels such as concurrent verbalizations
(Greene et al., 2018, p. 323). For instance, proportion of time
individual learners’ fixate and interact with game elements
related to different components of scientific thinking that are
supplemented by think-alouds could be useful in informing GLA
that is individualized to each learner’s needs.

4.2. Research Question 2
Our second research question examined whether the proportion
of time fixating on game elements related to scientific
reasoning predicted the proportion of time interacting with
game elements related to scientific reasoning, while controlling
for pre-test scores and experimental condition. The analyses
revealed significant relationships between pre-test scores as
well as interactions and fixations with elements related
to gathering information. Specifically, we found a two-way
interaction where the predictive model revealed that learners’
prior knowledge about microbiology moderated relationships
between interactions and fixations with game elements related
to gathering information, such that the less prior knowledge
learners had upon entering the learning session (e.g.,<50% items
correct on the pre-test assessment), then there was a positive
relationship between interactions and fixations for elements
related to gathering information. However, if the learner had
scored higher on the pre-test (e.g., more than 50% items correct
on the pre-test assessment), there was a negative relationship
between interactions and fixations on games elements related
to gathering information. We also found significant positive
relationships between experimental conditions as well as
interactions and fixations for game elements related to generating
hypotheses. This finding suggests that learners in the partial
agency condition spent significantly less time interacting with
game elements related to generating hypotheses compared to
the total agency condition. The predictive model also suggested
that, while controlling for experimental condition, there was
a significant positive relationship between interactions and
fixations for game elements related to generating hypotheses
during game-based learning. Unfortunately, we did not find
significant relationships between interactions and fixations for
elements related to experimental testing (p > 0.05). It is also
important to note that we built separate models for each
scientific reasoning variable (e.g., gathering information or
generating hypotheses) due to multicollinearity issues. However,
multicollinearity was not an issue for non-scientific reasoning
variables, suggesting that combining eye-gaze and in-game
actions data might provide insight into the extent to which
a learner is engaging in scientific reasoning. In other words,
if eye-gaze and in-game actions data are unrelated for certain
game elements (e.g., non-scientific reasoning elements), it might
suggest that the learner is not engaging in scientific reasoning.

These findings are partially consistent with our hypothesis.
Specifically, significant relationships between pre-test scores as

well as interactions and fixations for game elements related
to gathering information was consistent with our hypothesis,
empirical literature (Hillaire et al., 2009, p. 43; Huang et al.,
2015, p. 1049; Park et al., 2016, p. 796; Singh et al., 2018,
p. 488), and SDDS framework (Klahr and Dunbar, 1988, p. 1),
where we expected eye-gaze and prior knowledge to predict
scientific reasoning in-game actions with GBLEs. Additionally,
significant relationships between experimental condition as well
as interactions and fixations for elements related to generating
hypotheses was consistent with our hypothesis and empirical
literature (Hillaire et al., 2009, p. 43; Huang et al., 2015, p. 1049;
Park et al., 2016, p. 796; Singh et al., 2018, p. 488; Taub et al.,
2020b, p. 1). However, the findings did not reveal significant
relationships between interactions and fixations for elements
related to experimental testing, which is inconsistent with our
hypothesis and empirical evidence (Hillaire et al., 2009, p. 43;
Huang et al., 2015, p. 1049; Park et al., 2016, p. 796; Singh
et al., 2018, p. 488). A possible explanation of this result could
be that, while fixations and interactions for elements were
related for gathering information and generating hypotheses
game elements, the game elements defined as experimental
testing such as the scanner for testing food items did not require
the learners to interact with as much as the game elements
defined for gathering information and generating hypotheses.
For instance, learners may have spent the majority of their
time during game-based learning reading about the content and
finding clues for formulating their hypotheses, and so upon
testing hypotheses, it only required a few seconds or minutes to
test those food items, reducing the proportion of time learners
could have fixated and interacted with those game elements.
As such, it is critical for researchers, educational technologists,
and instructional designers to critically examine and build
game elements that are not biased toward one component of
scientific thinking relative to another in order to capture the
nuances of scientific thinking. For example, Crystal Island has
a disproportionate amount of game elements that learners can
fixate on and interact with that reflect gathering information,
such as the learner gathering clues from posters, research articles,
books, and non-player characters. Or providing multiple tools
that learners can use to track their clues and generate hypotheses
during problem solving, yet there are few tools available for
testing those hypotheses. Because of this, it is imperative to design
GBLEs as both training and research tools and critically evaluate
the design of GBLEs to capture dynamic learning behaviors
that not only support GLA, but are also based on theoretical
frameworks and empirical evidence.

4.3. Research Question 3
Our third research question examined whether relationships
existed between interactions and fixations for game elements
related to non-scientific reasoning, while controlling for pre-
test scores. Our analyses revealed no significant relationships
between interactions and fixations for game elements related
to non-scientific reasoning. These findings were inconsistent
with our hypotheses and previous empirical literature (Hillaire
et al., 2009, p. 43; Huang et al., 2015, p. 1049; Park et al.,
2016, p. 796; Singh et al., 2018, p. 488), where we expected
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there to be relationships between interactions and fixations for
game elements related to non-scientific reasoning. A possible
explanation of this could be related to the objective of Crystal
Island. Learners were required to solve a mysterious illness in
order to complete the game and so they had no reason to fixate on
or interact with game elements unrelated to scientific reasoning,
or completing the objective of the game such as fixating and
interacting with a plant or furniture during game-based learning.
As such, a disproportionately low volume of data were present
for fixations and interactions with elements related to non-
scientific reasoning game elements, whichmay not have provided
enough variance to detect a relationship in the predictive models.
These findings highlight how critical it is to account for the
objective of a learning environment when using GLA to guide
instructional decision making and gain insight into complex
learning behaviors.

4.4. Limitations
Limitations of this research include sampling bias such that the
participants who completed the study were all undergraduate
students and so the modeling results may not generalize to
other learners who are not undergraduate students. Additionally,
the sample was exclusively young adults, restricting our
modeling interpretations to learners ranging from ages 18
to 25. Additionally, the shortcomings associated with using
stepwise regression for model selection include biased parameter
estimation, among others (Harrell, 2015, chapter 4). We also had
significantly less volume of data for fixations and interactions
with non-scientific reasoning related game elements. We also
did not analyze information on learners’ background such as
academic major, race, etc. The findings from this study with
Crystal Island may also not generalize to other game-based
learning environments.

4.5. Implications and Future Directions
Future research should examine the effect of modifying the
degree of agency during game play based on multichannel data
generated from individual learners that depends on several issues
such as prior knowledge, background such as major, race, age,
etc., proportion of time fixating and interacting with game
elements related to scientific thinking, efficaciousness in using
scientific-thinking skills, developing competency etc. to guide
individualized game-learning analytics. For instance, developing
a temporal threshold that monitors how often and how long
learners are fixating and interacting with game elements related
to scientific reasoning to identify whether there is a need for
intervention could be a novel approach for addressing questions
related to how and what to adapt during game-based learning. If
a learner demonstrates high prior knowledge about the content,
then affording the learner more agency seems appropriate, but
what if the learner is unable to apply their knowledge during
game-based learning to think scientifically? Based on the learners’
multichannel data gathered during game-based learning, GLA
should be used in real-time to inform whether more or less
agency is needed to scaffold scientific thinking and optimize
individual learners’ performance. Studies should also examine
other data channels (e.g., concurrent verbalizations, physiology,

facial expressions of emotions) to assess whether these sources
of information could supplement eye-gaze, in-game actions,
and pre-test scores in their relation to scientific thinking and
performance with GBLEs (Plass et al., 2020b). Implications of our
findings lay a foundation for using multichannel data to define
and capture scientific thinking during game-based learning that
is crucial for supporting and optimizing individual scientific
thinking, learning, and performance. Specifically, our study
provides suggestions for building GBLEs that leverage agency
as scaffolding techniques intended to, not only foster scientific-
thinking skills, but capture, adapt, and inform instructional
decision making based on the needs of individuals’ scientific
thinking during game-based learning. Further, to implement
GLA in the classroom to inform instructional decision making,
it will require more support and technological resources than
are currently available to most educators, such as a teacher
dashboard, to illustrate the various data channels and likely aid
in making sense of the GLA and determining the appropriate
intervention for individual learners.

5. CONCLUSIONS

As our world and communities are faced with persisting, and
sometimes novel, socioeconomic, environmental, and health-
related issues (e.g., prolonged interruptions in classroom
instruction due to the COVID-19 pandemic), it is essential to
equip learners of future generations with an interdisciplinary set
of skills which contribute to higher-order thinking (e.g., scientific
thinking; National Research Council, 2012; NASEM, 2018). The
objective of our study was to examine relationships between
scientific thinking and performance during game-based learning
using learners’ multichannel data—i.e., eye gaze, in-game actions,
level of agency, and pre-test scores and post-test scores.
Results showed significant predictive relationships between eye-
gaze, pre-test scores, and interaction data related to scientific
reasoning, suggesting that eye-gaze, prior knowledge, and agency
play a crucial role in scientific thinking and performance with
GBLEs. Overall, our findings highlight how critical it is to
capture multichannel data, specifically a combination of in-game
actions, eye gaze, degree of agency, and pre-test scores, when
investigating scientific thinking with GBLEs. Using multiple
data channels to define scientific thinking has the potential
to support individualized instructional decision making that
is guided by a combination of the learners’ level of prior
knowledge about the topic, as well as how long and what
learners are fixating on and interacting with in terms of
their relation to scientific reasoning. For instance, since the
models revealed that prior knowledge moderates relationships
between fixations and interactions with game elements related
to gathering information, then a learner’s pre-test score should
inform the researcher, instructor, or system about if and when
they should intervene based on whether the individual learner
is demonstrating GLA which may be detrimental to learning
and performance. Perhaps, the learner has low prior knowledge
about microbiology upon entering the learning session, and so
this would inform the instructional decision being made. If the
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learner is not fixating on game elements related to gathering
information, which is critical for their scientific thinking (i.e.,
hypothesis generation) when there is little prior knowledge
about microbiology, then the researcher, instructor, or system
would be aware that these data suggest the learner may not
be engaging in scientific-thinking actions. Yet, if the learner
has a relatively high prior knowledge about the content, then
the researcher, instructor, or system need not worry about
whether the learner is fixating on game elements related to
gathering information as it is not critical for their scientific-
thinking actions. To implement GLA in the classroom to
assist in instructional decision making, educators will need
more support and technological resources to help effectively
monitor and understand learners’ data. Recent studies have
begun investigating dashboards as tools in the classroom to assist
in data sense-making for guiding instruction across individual
learners (Perez-Colado et al., 2017, p. 51). Additionally, our
findings draw us to evaluate the role of agency designed into
Crystal Island when referring to the three-way interaction. In
other words, was one experimental condition designed to require
learners to engage in one component of scientific reasoning
more than another and why (i.e., why require learners in partial
agency to interact with game elements related to gathering
information compared to generating hypotheses)? Since our
preliminary analyses suggested that learners assigned to the
partial agency condition spent a significantly higher proportion
of time interacting with game elements related to gathering
information compared to the total agency condition, while the
total agency condition spent a significantly higher proportion
of time interacting with game elements related to generating
hypotheses compared to the partial agency condition, it suggests
that the degree of agency afforded to learners serves as a
critical scaffolding technique that impacts scientific thinking
and performance (Taub et al., 2020b, p. 1). As such, it is our
responsibility as researchers and scientific thinkers to critically
evaluate what each condition is requiring learners to do and
why? Perhaps, designing levels of agency in GBLEs should be
based on the prior knowledge the learner brings to the session to
optimize their scientific thinking, learning, and performance. In
the progressing realm of interconnected human and technology

ecosystems, implications of our findings could enhance our
understanding of scientific thinking during game-based learning
to effectively address future GBLEs that are designed for
individualized and adaptive instruction to optimize scientific
thinking, learning, and performance.
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