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ABSTRACT
A student’s ability to accurately evaluate the quality of their work
holds significant implications for their self-regulated learning and
problem-solving proficiency in introductory programming. A wide-
spread cognitive bias that frequently impedes accurate self- assess-
ment is overconfidence, which often stems from a misjudgment
of contextual and task-related cues, including students’ judgment
of their peers’ competencies. Little research has explored the role
of overconfidence on novice programmers’ ability to accurately
monitor their own work in comparison to their peers’ work and its
impact on performance in introductory programming courses. The
present study examined whether novice programmers exhibited
a common cognitive bias called the "hard-easy effect", where stu-
dents believe their work is better than their peers on easier tasks
(overplace) but worse than their peers on harder tasks (underplace).
Results showed a reversal of the hard-easy effect, where novices
tended to overplace themselves on harder tasks, yet underplace
themselves on easier ones. Remarkably, underplacers performed
better on an exam compared to overplacers. These findings advance
our understanding of relationships between the hard-easy effect,
monitoring accuracy across multiple tasks, and grades within in-
troductory programming. Implications of this study can be used to
guide instructional decision making and design to improve novices’
metacognitive awareness and performance in introductory pro-
gramming courses.
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1 INTRODUCTION
Most novice programmers lack the metacognitive knowledge and
skills to harness the benefits of self-regulated learning needed to
solve open-ended programming problems [17, 19, 28, 30]. Metacog-
nition is the ability to monitor and regulate one’s own cognition
to achieve a goal. Numerous studies in computer science edu-
cation have developed support tools to enhance metacognition
among novice programmers, often utilizing automated feedback
tools [4]. Despite these efforts, many studies report limited suc-
cess in using automated feedback tools to improve metacognition,
leading to recommendations for explicit instruction from educa-
tors [4, 10, 18, 21, 29].

It is possible that novices may not yet possess the level of self-
awareness needed to develop their metacognitive abilities. Ques-
tions remain about whether automated feedback tools can foster the
self-awareness needed to for novices to develop and utilize metacog-
nitive knowledge and skills. Novice programmers require an accu-
mulation of metacognitive experiences to develop self-awarness.
By consciously observing cognitive and affective processes (e.g.,
metacognitive feelings), such experiences can foster valuable in-
sights into one’s knowledge, abilities, and limitations while solving
problems [26]. As a result, metacognitive experiences play a crucial
role in shaping metacognitive knowledge and skills and must be
accounted for in the future design and implementation of auto-
mated feedback tools in supporting metacognition in introductory
computer science (CS) courses.
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Challenges exist because every student is susceptible to a dis-
torted level of awareness due to inaccurate self-monitoring. A preva-
lent bias contributing to this miscalibration is known as overconfi-
dence. Yet, the direction of bias–overconfidence or underconfidence–
depends on the conditions of a task and the surrounding context.
The hard-easy effect is where this relationship can be observed [16],
a common bias where a student underestimates their work on easy
tasks but overestimates their work on hard tasks. In contrast, the ef-
fect is reversedwhen a student compares the quality of their work in
relation to their peers’ work (i.e., placement), where students over-
place their work as better than their peers on easy tasks, but worse
than their peers on hard tasks. Burson et al. [2] explained that eas-
ier tasks tend to produce underestimation and better-than-average
effects (i.e., overplacement), while hard tasks tend to produce over-
estimation, but worse-than-average perceptions of themselves in
relation to peers.

To the best of our knowledge, no study in CS education has exam-
ined the role of task difficulty on novice program- mers’ metacog-
nitive monitoring accuracy. Additional gaps exist as there is little
understanding of whether novices’ metacognitive monitoring accu-
racy improves as they progress in the course and may develop more
knowledge of programming topics. As such, examining whether
metacognitive monitoring accuracy improves over time and across
multiple assignments that vary in task difficulty and its relation
to performance may provide insights into their learning process
and developing metacognitive knowledge and skills. Furthermore,
improved metacognitive monitoring accuracy can lead to better self-
awareness and meaningful metacognitive experiences, ultimately
enhancing learning outcomes and the development of metacog-
nitive knowledge and skills in introductory programming with
automated tools.

In this study, we examined whether novices demonstrated the
hard-easy effect and the extent to which their metacognitive mon-
itoring accuracy improved across four programming tasks. Next,
we examined whether the proportion of metacognitive accuracy or
bias across the four programming tasks impacted exam grades in
an introductory CS course. The following research questions and
hypotheses were investigated:

• RQ1: Do novice programmers overplace on easiest home-
work and underplace on hardest homework? We hypothe-
size that novices will overplace on easy tasks and un-
derplace on hard tasks, as prior studies have found that
novices tend to overplace on easy tasks but underplace them-
selves on hard tasks [23, 27, 32].

• RQ2: Do novice programmers’ placements change over time,
or anchor to the initial homework?We hypothesize that
novices’ placement judgments will anchor to the initial
homework, as a prior study found estimation judgments
did not change over the course [6]. We expect that students’
placement judgments will remain stable and anchor to the
initial homework completed, demonstrating an anchoring-
and-adjustment heuristic bias [35].

• RQ3: Are there differences in performance (exams 1-2) be-
tween placement groups? We hypothesize There will be
differences in performance (exams 1-2) grades between

novices who more accurately place themselves com-
pared to novices who more inaccurately place them-
selves.Based on prior studies [6, 8] and themodel ofmetamem-
ory [25], we expect students who place themselves more
accurately will perform better on exams 1-2 compared to
novices who place less accurately across multiple homework
assignments.

1.1 Studying Metacognition with Automated
Tools

In the last two decades, there have been ongoing efforts to study
students’ metacognition and its relation to performance in CS edu-
cation [33]. A systematic review Garcia et al. [14] identified several
scaffolds and tools designed to measure metacognition while stu-
dents build their programs. [29] examined novice programmers’
metacognition with an automated tool. Novices were randomly
assigned to one of two conditions: a prompt and a control. After
reading a programming problem prompt, participants in the prompt
condition were asked to reflect on a problem statement before writ-
ing any code and were directed to a quiz test case. They were asked
to calculate the output of the program described in the prompt
given a random set of inputs, and once the test case was correct,
they could move forward with writing code with an automated
feedback tool. In contrast, the control condition could start writing
code immediately after reading the problem prompt with an auto-
mated feedback tool. Metacognitive processes were collected using
a think-aloud protocol in both conditions. The results showed that
the prompt condition verbalized significantly more metacognitive
processes compared to the control; yet, these differences were only
present for those who submitted correct code in the prompt condi-
tion. Participants who did not submit correct code demonstrated
no differences in metacognitive processes between the conditions.
However, the conditions did not differ in performance.

These findings may suggest that, while novice programmers in
the prompt condition may have demonstrated more metacognitive
processes compared to the control, this difference was only present
if the student had submitted correct code. However, regardless of
metacognitive differences, it did not impact performance. This re-
sult may suggest that the quality of metacognitive processes was
low, perhaps due to a lack of self-awareness or accuracy in metacog-
nitively monitoring their work and progress. Questions remain as
the authors did not measure how accurate novice programmers’
metacognitive monitoring processes were while they built their
programs. [20] measured metacognitive monitoring processes with
an automated feedback tool by asking participants to self-reflect
and explain their programs they built with an automated feedback
tool over the course of 10 weeks. The results showed that all of
the novices demonstrated at least some degree of metacognitive
monitoring and evaluating processes in their reflections and ex-
planations. However, only a few novices reported that they used
the insights gained from their reflections and explanations to im-
prove the quality of their work. The analyses also revealed that most
novices struggled to reflect and sometimes indicated a complete lack
of awareness in their understanding of the programming problem.
The authors concluded that novice programmers’ metacognition
was highly variable and that many may need explicit instruction on
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how to best monitor their work to improve the quality of programs
with automated tools.

Marwan et al. [21] extended this work by building a progress fea-
ture into an automated tool that provided feedback on the progress
novies made toward a subgoal based on the quality of their code.
Using interview and log data to measure metacognitive monitoring
processes, novices indicated that the progress feedback supported
their metacognitive monitoring processes. However, limitations
exist in this study. First, it is unclear whether the progress feedback
improved the quality of code. Second, data were not collected on
metacognitive monitoring processes used during the programming
task, missing critical information on if, when, and how accurate
novices’ metacognitive monitoring was and its relation to perfor-
mance.

In sum, many studies show that novice programmers do not
initiate accurate metacognitive monitoring, possibly due to a com-
plete lack of self-awareness, and this may impact their performance
with automated feedback tools in introductory CS courses. More
research is needed to understand factors that may impede novices’
ability to accurately monitor the quality of their programs that
contributes to better self-awareness and enhances their program-
ming performance with automated feedback tools in introductory
CS courses. Further, more research is needed to measure the accu-
racy of novices’ ability to monitor and evaluate their work and its
relation to performance with automated feedback tools.

1.2 Metacognitive Accuracy and Performance
While automated tools hold much promise for increasing the quality
of programs [14], do automated tools support novices developing
the self-awareness needed to utilize metacognition? For metacogni-
tion to be effective, novices must accurately monitor and evaluate
the quality of their work [8]. Accurate monitoring relies on self-
awareness via the novice observing their knowledge and abilities in
relation to programming tasks, also known as a metacognitive expe-
rience. A metacognitive experience requires the novice to observe
how they approach a program and note its failures and successes.
To determine how accurate those observations are, they must rely
on their metacognitive feelings.

Metacognitive feelings are subjective judgments that involve ex-
periences of confidence, uncertainty, familiarity, difficulty, ease, and
comprehension [34]. These judgments provide valuable information
about the effectiveness, accuracy, and completeness of cognitive pro-
cesses and strategies that support self-awareness and metacognitive
monitoring. By integrating cues from the environment, task char-
acteristics, and internal cognitive processes, metacognitive feelings
emerge and change over time. For example, a novice programmer
may feel more confident about their program for an easy task in a
small community college course, while their confidence may waver
when faced with a difficult task at a prestigious university. Hence,
the specific environment and task characteristics contribute to feel-
ings of confidence and influence how one perceives their work.
However, environmental and task-related factors can introduce
biases that hinder novices from accurately assessing the quality
of their work, potentially impacting their performance due to this
miscalibration. As a result, it is important to measure the accuracy
of metacognitive monitoring via metacognitive feelings such as

confidence to determine whether a novice is self-aware while they
initiate metacognitive monitoring. Furthermore, understanding the
extent and direction of metacognitive monitoring inaccuracy when
present may provide valuable insights into factors that contribute
to a novice’s ability to utilize metacognition effectively with auto-
mated tools.

A commonly used method to measure metacognitive accuracy
is by comparing feelings of confidence ratings with actual perfor-
mance [34]. This method evaluates how well-calibrated an indi-
vidual was in monitoring their work relative to their grade. Tra-
ditionally, feelings of confidence have been collected using Likert
scales [7, 13]. Moore and Healy [24] operationalize confidence as
a multi-dimensional construct, where individuals rely on three
judgments: estimation, placement, and precision. Estimation is the
most studied facet of confidence in CS education research, and this
involves monitoring the quality of one’s own work. For example,
overestimation indicates the student estimated the quality of their
work as better than it was. On the other hand, placement deals with
evaluating one’s own work by comparing it to their peers’ work.
Overplacement would describe a student who believed the quality
of their work was better than the work of their peers, despite it
being lower quality.

The placement dimension of confidence is explained further by
social comparison theory [11], where each person is described as
having an inherent drive to compare themselves to other people
to determine their abilities. Individuals can engage in upward or
downward social comparisons, to assess their ability or work rela-
tive to peers they perceive as superior or inferior, respectively. A
student who overplaces themselves indicates they have a miscali-
brated judgment, or inaccurate metacognitive monitoring, where
they believe their ability or work surpasses their peers. These com-
parisons impact a student’s feelings of confidence, and this facet is
the least studied in CS education. The final facet of confidence is
the degree of certainty a student feels about their estimation and/or
placement judgment [24].

The accuracy of a metacognitive judgment is determined by the
cues a person perceives, which form the basis for their feelings
of confidence. Task difficulty impacts the degree of metacognitive
bias a student may display. One of the most common biases impact-
ing metacognitive accuracy is known as the hard-easy effect [16].
While evidence of the hard-easy effect is present in a number of
research domains, to the best of our knowledge, no study in CS
education has directly investigated the role of the hard-easy effect, a
common metacognitive bias, on students’ ability to accurately place
their work across multiple programming tasks. Additional limita-
tions exist as many past studies measure metacognitive accuracy
by collecting a single facet of confidence: estimation. This misses
information on other facets of confidence, such as placement, that
are impacted by the environment and task characteristics. Collect-
ing more information on the components of confidence will aid in
identifying if, where, and when metacognitive accuracy and biases
emerge over the course of multiple tasks and its impact on per-
formance in introductory programming. Finally, few studies have
examined whether novice programmers demonstrate the hard-easy
effect and if placement judgments remain stable over time, anchor-
ing and adjusting to the initial cues novices receive about their
peers’ abilities with automated tools.
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1.3 Model of Metamemory
Developing metacognitive knowledge and skills relies on a student
accumulating meaningful metacognitive experiences. Metacogni-
tive experiences entail conscious cognitive and affective states that
foster self-awareness, metacognitive feelings, and judgments [12,
34]. In this paper, we ground our study in the Nelson and Narens
[25] model of metamemory because it serves as a framework for
comprehending students’ metacognitive processes and memory
performance. In this framework, metamemory encompasses the
metacognitive processes involved in monitoring and controlling
one’s memory, including knowledge or strategies employed to en-
hance performance andmetacognitive awareness.Within themodel
of metamemory, metacognitive accuracy refers to an alignment be-
tween students’ subjective judgments of their memory performance
and their actual objective performance.

Metacognitive accuracy entails two fundamental components:
calibration and resolution. Calibration denotes the correspondence
between students’ subjective judgment in their performance and
their actual performance, with high calibration indicating accu-
rate judgments and low calibration signifying metacognitive biases
such as overconfidence or underconfidence. Resolution refers to
the ability to discriminate between high and low memory perfor-
mance. A high-resolution metacognitive system enables students
to accurately differentiate instances where their memory is likely
to be accurate from those likely to be inaccurate. These compo-
nents of metacognitive accuracy stem from metacognitive feelings
which inform the student’s metacognitive judgment. For the pur-
poses of this paper, we only focus on how well students’ feelings
of confidence are calibrated to their actual performance. As previ-
ously mentioned [24], students rely on multiple sources of infor-
mation that contribute to feelings of confidence. Thus, the model
of metamemory provides a comprehensive framework for studying
the interplay between how well students’ feelings of confidence are
calibrated to their own and their peers’ performance and its impact
on exam grades in introductory programming.

1.4 Current Study Objective
The primary goal of this study was to examine the direction and
stability of metacognitive accuracy over the course of multiple
programming assignments and its impact on exam grades in an
introductory programming course. First, we examined if novice pro-
grammers’ demonstrated a common bias called the hard-easy effect.
Next, we examined if novices’ placement judgments changed or
remained stable over multiple homework assignments, and finally,
we assessed whether the direction and proportion of metacognitive
inaccuracy over multiple programming assignments impacted exam
grades. The findings from this research offer valuable insights for
educators in guiding their pedagogical strategies and enhancing
student support mechanisms. For instance, by capturing the evo-
lution of novices’ accuracy in metacognitive monitoring across a
series of programming tasks, educators can gain a deeper under-
standing of their students’ metacognitive biases. This knowledge
can then be strategically leveraged to tailor instructional materials
and approaches that address these biases, potentially leading to
favorable performance outcomes.

2 DATA COLLECTION METHODS
2.1 Participants and Materials
Data were collected from undergraduate students enrolled in an in-
person introductory computer science (CS1) course (based in Java)
across multiple semesters (Fall 2021, Spring 2022, and Fall 2022) at
a large private university in the Northeastern USA. An institutional
review board approved this study before data were collected, and
the university prohibited the release of demographic information
of the students and so these data are missing from our sample.
However, for students to enroll in the introductory CS1 course, they
had to be at least 18 years old, had not yet declared a major, and
demonstrated little experience in programming. At the beginning
of the course, the syllabus provided information to students on
how each homework assignment would be graded. Students were
asked to report their estimation and placement judgments before
they submitted their code for each homework assignment to the
automated feedback tool. First, students were asked to estimate the
grade they would receive on a specific assignment and then they
were asked to place the class’ average homework grade for the same
assignment, yielding two types of judgments per assignment. Since
students could resubmit their code to the autograder tool as many
times as they wished prior to the deadline, they were prompted to
report their judgments every time their code was submitted. The
specific questions are below:

• Estimation judgment:What grade do you think you will
get on this assignment (over 100)?

• Placement judgment:What do you think the class average
will be on this assignment (over 100)?

2.2 Course Design and Programming
Assignments

In the course, students were required to complete 9 programming
homework assignments. Students had the option to drop one home-
work grade from their final course grade. Most students dropped
their HW 8 grade; thus, we did not include it in our analysis. The
duration of the homeworks ranged from 7 to 14 days before the dead-
line. Students utilized an online platform called Codio1, where they
completed the programming tasks and had access to an automated
feedback tool (i.e., autograder). For each homework assignment,
students had unlimited attempts to submit their programs to receive
immediate feedback from the autograder, such as error messages.
Once code was submitted, the autograder provided students with
their scores immediately, regardless of whether estimation or place-
ment judgments were provided. However, students could not view
the class’ average homework grade until after each homework was
due. Codio also provided course resources, including hyperlinks
to lecture notes, an interactive electronic textbook that covered
programming topics, and various learning activities related to the
course topics (e.g., practice problems on recursion or abstract data
types). Students also had access to PDF slides on the course topics,
which were uploaded to the learner management system by the
instructor on a weekly basis.

Students were required to complete eleven quizzes and two ex-
aminations throughout the course. Specifically, the examinations

1https://www.codio.com/
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were administered online and were open-note and open-internet
during Fall 2021 (due to COVID-19), allowing students to use the
resources they needed to solve the problems, but the examinations
and quizzes were closed-note/internet during Spring and Fall 2022.
The first exam was administered in the middle of the semester, after
the completion of the fourth homework assignment. The second
exam was administered at the end of the course after the eighth
homework assignment was completed. Table 1 illustrates which
programming topics corresponded to each homework assignment
and exam.

2.3 Data Coding and Scoring
2.3.1 HomeworkGrades. The online grading platformGradescope2
was used to automatically grade students’ programs. We relied on
the results obtained from Gradescope to assess the students’ grades
on each homework assignment, except for homework 8 which was
not included in our analysis, as previously mentioned. To facilitate
a fair comparison among students, we created an average of each
homework grade, in cases where a student submitted their code
multiple times to the autograder.

2.3.2 Placement Groups. Students were categorized into one of
three groups: overplacers, underplacers, or accurate placers. To do
that, we computed JPi, the projected (or judgment) percentile rank
based on the estimate and placement judgment responses (guesses),
and APi, the actual percentile rank based on actual grades and class
average.

Since students were allowed to submit as many times as they
wished prior to the deadline per HW, many submitted multiple
estimation and placement judgments per homework. To deal with
this, we averaged estimation and placement judgments for each
HW.We also averaged homework grades of students who submitted
their programmultiple times.We determined the deviation between
the actual percentile (APi) and judgment percentile (JPi) for each
student and for each homework assignment, and then classified
students as overplacers, underplacers, or accurate placers.

Overplacers (JPi>APi) believed they did better than their peers’
average grades, while underplacers (JPi<APi) believed they did
worse than their peers’ average grades. To account for slight de-
viations between APi and JPi, we created an error margin of ±2%
around the APi, and students who fell within this margin were
considered accurate placers.

3 RESULTS
3.1 Preliminary Analysis
To control for the potential impact of selection bias, as students
were not required to report their placement judgments in the study,
we examined whether students who reported judgments differed
in their grades (homework, exams) than those who did not report
judgments. A series of Wilcoxon rank sum tests were calculated
since our data did not meet normality distribution requirements.
The results showed students who reported placement judgments
did not differ in performance from those who did not report place-
ment judgments (ps>.05). While a marginal effect was observed
for homework 4 (p=.0988), its magnitude was very small (<1 point)
2https://gradescope.com/

and did not hold under the post-hoc method. See Table 2 for results.
It is important to note that the sample size for exams 1 and 2 under
the ‘report’ column indicates the highest sample at the student
level, that is students who provided the placement judgments for
the highest number of homework assignments and also had grades
for both exams 1 and 2. For example, while homework 1 yielded
237 placement judgments, many of these students did not provide
placement judgments for homework 0, 1, and 2. In addition, some
of these students dropped the course and thus did not complete the
first or second exam. As such, 98 students denotes the highest sam-
ple with the most placement judgments, specifically for homeworks
0-3.

3.2 Do novice programmers overplace on the
easiest homework and underplace on the
hardest homework (hard-easy effect)?

3.2.1 Methods. To answer RQ1, first, the difficulty of each home-
work assignment was calculated using a two-parameter (2PL) Item
Response Theory model (IRT) [5]. IRT is a common approach to
estimating the difficulty of assignments for students with vary-
ing levels of knowledge. It also provides discrimination estimates
to represent how well an assignment distinguishes from another,
based on students’ knowledge levels. A high discrimination esti-
mate suggests the probability a student did the assignment correctly
changed significantly based on the student’s level of knowledge.
In contrast, the difficulty estimates of the IRT model indicate the
knowledge level at which a student has a 50% probability of get-
ting the assignment correct. A higher value corresponds to a more
difficult assignment.

To calculate the 2PL IRT model, we used the full sample of stu-
dents, totaling 711 (n=711). All students were included in this analy-
sis based on whether they received a grade for any of the homework
assignments: 0-5 and 7. Homework 6 was not included in our anal-
ysis because this assignment changed across the three semesters
during data collection. In addition, homework 8 was not included
in our analysis (as previously mentioned) because most students
dropped the assignment from their final course grade. Similarly
they were not able to utilize the automated feedback tool like the
other assignments.

To define a passing grade, each grade on the homework assign-
ment was dichotomized based on whether the student received an
‘A’ letter grade. A ‘1’ was assigned to grades at or above 93 (the
A grade cutoff), and the rest were assigned a ‘0’. This threshold
was used because there was low variability in homework scores,
likely due to the unlimited submissions students could utilize to
iteratively correct and resubmit their code based on the feedback
obtained from the automated feedback tool. Afterward, we used
the ‘lmt’ package in RStudio to perform the IRT analysis [31].

Once the difficulty estimates were obtained, we created the eas-
iest and hardest assignments. Next, McNemar’s tests were calcu-
lated to examine if the frequency of underplacers and overplacers
changed from the easiest to hardest assignments, testing the hard-
easy effect. McNemar’s tests were used because they are designed to
analyze differences in the frequencies between paired groups [22].
Accurate placers were not included in our analysis because zero
students accurately placed on the hardest homework. In addition,
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Table 1: Homework assignments, programming topics, and exams.

Homework Topics Topics Exams
0 Hello World, Java Syntax, Print statements 30 Exam 1
1 Conditionals and Loops, Variables and Primitive Types 51 Exam 1
2 Functions and String Manipulation 51 Exam 1
3 Functions and Array Manipulation 50 Exam 1
4 Recursion 50 Exam 1
5 Object-Oriented Programming, Unit Testing 50 Exam 2 (Cumulative)
7 Linked Nodes, Unit Testing 52 Exam 2 (Cumulative)

Table 2: Results of Wilcoxon rank sum tests to examine differences between groups.

Test Statistic Reported Did not report
Homework W p n Mdn n Mdn

0 61544 .7536 333 100 372 100
1 50230 .3516 237 94.12 443 94.12
2 41805 .4402 179 93.14 486 94.12
3 17782 .7263 98 92.31 386 92.31
4 32218 .0988 113 96.08 519 95.1
5 21560 .694 77 97 545 97
7 15820 .7432 58 93.27 560 92.31

Exam 1 28093 .3154 98 82.73 539 80.45
Exam 2 28362 .1219 98 82.05 527 76.82

Note. Mdn=Median grade.

we were more interested in whether there were changes in the
direction of metacognitive inaccuracy (e.g., hard-easy effect) across
the homeworks.

3.2.2 Results. Results indicated that the homework assignments in
the course were not extremely difficult (demonstrated by negative
values in Table 3). The easiest assignment was homework 0 since
it had the lowest difficulty value, while the hardest assignment
was homework 3 since it had the highest difficulty value. Refer to
Table 3 for detailed model results 3. These IRT results were used to
define the easiest and hardest assignments in the course.

A McNemar’s test revealed significant changes in the frequency
of underplacers and overplacers from the easiest and hardest home-
works, 𝜒2(1)=9.0312, p=.002654. Specifically, there were more un-
derplacers on the easiest homework and more overplacers on the
hardest homework. These results did not supportHypothesis 1,
where we expected students to overplace more on the easiest home-
work and underplace more on hardest homework. In this finding,
the hard-easy effect was reversed for the placement groups based
on the level of difficulty.

3.3 Do students’ placements change over time,
or anchor to the initial homework?

3.3.1 Methods. To examine if placement judgments changed, or
were anchored to the initial homework, placement judgments made
on the first 4 homeworks were examined. Specifically, we selected
the first 4 homeworks because they included the hardest and easiest

3Std. errors and z-values in Table 3 correspond to difficulty scores.

assignments and 2 additional assignments that fell somewhere in
between. Extracting the placement judgments students reported
over the course of the 4 homeworks would allow us to investigate
the degree to which placement judgments changed or anchored to
the initial homework. An important note to make is that students
did not have any information on their peers on the initial homework
– homework 0. As such, their placement judgments may change
once they have more information on their peers’ grades following
the initial homework. As previously mentioned, the class average
was posted after each homework deadline on the course learning
management system, so every enrolled student could access the
class’s average grade on homework 0 while working on homework
1, but could not do so for homework 0.

Students who reported a placement judgment for the first 4
homeworks were included in our analysis, totaling a sample of 98
students. Placement groups were created based on the placement
groups described in the Data Collection Methods section. Using
the count of placement groups for the first 4 homeworks, a series
of three McNemar’s tests were calculated using a Benjamini and
Hochberg (B-H) false discovery rate post hoc correction, at a 5% cut-
off, to control for multiple testing errors Benjamini and Hochberg
[1]. This allowed us to examine whether there were significant
changes in the frequency of overplacers, underplacers, and accurate
placers from homeworks 0-3.

3.3.2 Results. The first McNemar’s test revealed marginally signifi-
cant changes in the frequency of overplacers and underplacers from
homework 0 to 1, 𝜒2(1)=61.253, adj. 𝛼=.01667, p<.0001. This finding
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Table 3: Median midterm grades across placement groups by each homework assignment.

Homeworks Difficulty Discrimination Std. Error Z-values
0 -3.6001 1.2426 .8507 -4.2317
1 -.5810 1.0162 .1152 -5.0425
2 -.3621 .8145 .1214 -2.9838
3 .9792 1.1654 .1123 4.3744
4 -.5794 1.2756 .1044 -5.5490
5 -.8794 1.5380 .1162 -5.0824
7 .1368 1.2671 .0833 -7.567

suggested that the frequency of underplacers and overplacers sig-
nificantly changed from homework 0 to 1. Specifically, there were
significantly more underplacers on homework 0 and significantly
more overplacers on homework 1 (Figure 1). In contrast, there were
no changes in the frequency of underplacers and overplacers from
homeworks 1 to 2 (𝜒2(1)=.0062, p=.9372) and homeworks 2 to 3
(𝜒2(1)=.4156, p=.5191). This result suggested that the frequency of
underplacers was significantly higher than overplacers on home-
work 0, but the frequency of underplacers was significantly lower
than overplacers on homework 1. In addition, there were no signif-
icant changes in the frequency of overplacers and underplacers on
the rest of the homeworks. This result supported Hypothesis 2,
where we expected students to adjust and anchor their placement
judgments to the initial homework, after receiving information on
the class’ average homework grade. This suggested that students’
placement judgments were possibly adjusted and anchored to the
class’s average grade on homework 0.

3.4 Are there differences in performance (exams
1-2) grades between placement groups?

3.4.1 Methods. To examine whether exams 1-2 grades differed be-
tween placement groups, placement groups were created using the
group assignment described in Section 2.3.2. Specifically, students
who reported a placement judgment for the first 4 homeworks were
included in our analysis, totaling a sample of 98 students. We did
not include the other homeworks (5 and 7) in our analysis, since
a large portion of students did not report placement judgments
on homeworks 5-7. As noted in Table 2, only 58 students reported
placement judgment for the last homework, which would not yield
a large enough sample to allow for statistical analysis. The sample
included the first 4 homeworks since it yielded the largest sample
of students who also had exam 1-2 grades.

Based on how accurately students placed their peers in the class,
we counted the number of times each student accurately placed,
overplaced, or underplaced on the first four homeworks. Next, each
student received three separate scores that were based on the per-
centage of accurate placement, overplacement, and underplacement
across the four homeworks. After creating the groups, there were
zero students who accurately placed on more than 1 of the 4 home-
works, and because of this, we did not analyze students in terms of
their proportion of accurate placement. In addition, we examined
whether the direction of metacognitive accuracy had an impact on
exam grades.

To determine if there were differences in exam grades between
the over/underplacement groups, we examined if our data met the
assumptions needed to calculate an Analysis of Variance (ANOVA).
Two Shapiro-Wilks tests were calculated to examine if our data met
assumptions of normality. The results showed significance for each
response variable: exam 1 (W =.91312, p<.0001) and exam 2 grades
(W=.89516, p<.0001). As a result, two separate Kruskal-Wallis tests
were calculated to examine differences in the rank of exam 1-2
grades between overplacers and underplacers The Kruskal-Wallis
test is the non-parametric alternative to the one-way ANOVA, but
does not assume data hold a normal distribution. If significant
differences in grades were detected between over/under placement
groups, a pairwise Dunn’s test was calculated to determine exactly
which group was different [9].

3.4.2 Results. A Kruskal-Wallis test revealed significant differ-
ences in exam 2 grades between overplacement groups, 𝜒2(3)=6.108,
adj. 𝛼=.0333, p=.0333. A pairwise Dunn’s test revealed significant
differences in exam 2 grades, where students who overplaced on
25% of the homeworks scored significantly higher (Mdn=90.0) than
students who overplaced on 50% of the homeworks (Mdn=74.1),
Z=2.7501, adj. 𝛼=.0083, p=.0059. In contrast, there were no differ-
ences in exam 2 grades between students who overplaced on 75% of
the homeworks (Mdn=74.1) and 100% of the homeworks (Mdn=70).
Surprisingly, there were no differences in exam 1 grades between
any of the overplacement groups (ps>.05; Table 4).

The second Kruskal-Wallis test found significant differences
in exam 2 grades between underplacement groups, 𝜒2(3)=11.336,
adj. 𝛼=.01667, p=.01004. A pairwise Dunn’s test found significant
differences in exam 2 grades, where students who underplaced
on 25% of the homeworks scored significantly lower on exam 2
(Mdn=73.4) than students who underplaced on 100% of the home-
works (Mdn=93.2), Z=-2.6883, adj. 𝛼=.0083, p=.0072. Interestingly,
there were no differences in exam 2 grades between students who
underplaced on 50% (Mdn=82.5) of the homeworks and 75% of the
homeworks (Mdn=85.5). Similar, there were no differences in exam
1 grades between underplacement groups (ps>.05).

Findings showed that very few students accurately placed on
more than 1 of the 4 homeworks, showing that accurate metacog-
nition was rare. Notably, students who overplaced on 1 of the 4
homeworks (25%) had significantly higher exam 2 grades than those
who overplaced on 2 of the 4 homeworks (50%). In contrast, those
who underplaced on all of the homeworks (100%) scored signifi-
cantly higher on exam 2 than those who underplaced on 1 of the 4
homeworks (25%).



LAK ’24, March 18–22, 2024, Kyoto, Japan E. B. Cloude, P. Kumar, R. S. Baker, & E. Fouh

Figure 1: Distribution of placement groups across homeworks 0-3.

These results do not support Hypothesis 3, where we expected
differences in exam 1-2 grades between the placement groups,
specifically higher exam grades for accurate placers compared to
inaccurate placers. While we found that underplacers performed
significantly better on exam 2 than overplacers, there were no differ-
ences in grades between accurate and inaccurate groups. Similarly,
there were no differences in exam 1 grades between placement
groups. A possible explanation for this result could be due to the
fact that most of the students in the course did not accurately place
himself regardless of the homework assignment task, indicating a
lack of metacognitive awareness altogether. The lack of accurate
metacognitive monitoring altogether could explain why there were
no differences in exam grades between accurate and inaccurate
placement groups.

Interestingly, those who underplaced more often on the home-
work assignments than overplaced, had significantly higher exam
2 grades. This result was surprising, as we did not expect miscali-
brated metacognitive monitoring to benefit performance. A possible
explanation for this could be due to the fact that students who be-
lieved the quality of their work was lower than their peers may
have sought out more help, instruction, and other resources to fur-
ther develop their knowledge and skills, possibly contributing to
higher exam 2 grades as a result. Since these students believe that

their quality of work is lower, they may be more motivated or put
forth more effort to improve the quality of their work. In contrast,
students who overplaced, or believed their work was better than
their peers, may not have put forth as much effort as underplacers,
since they did not suspect that the quality of their work was better
than average, possibly contributing to significantly lower exam 2
grades.

4 DISCUSSION
The primary goal of this study was to examine the direction and
stability of metacognitive monitoring accuracy across multiple pro-
gramming assignments and its impact on exam grades in an in-
troductory programming course. In RQ1, we examined whether
novices demonstrated the hard-easy effect in their placement judg-
ments. The analyses indicated that there were significantly more
underplacers on the easiest homework than overplacers. In con-
trast, there were more overplacers on the hardest homework than
underplacers. These results did not support Hypothesis1, where
we expected students to overplace more on the easiest homework
and underplace more on hardest homework [16], as found by prior
studies [23, 27, 32]. A possible explanation for these findings could
be due to the task-related cues students received on the easy and
hard homeworks. For example, the hard-easy effect explains that a
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Table 4: Median exam grades between placement groups.

Placement Groups
Underplacer Overplacer

% of placement direction across 4 homeworks n Mdn1 Mdn2 n Mdn1 Mdn2
25% 64 80.9 73.4 17 86.8 90.9
50% 18 87.5 82.5 19 87.3 82.3
75% 13 85 85.5 59 80.9 74.1
100% 3 88.2 93.2 3 74.5 70
Note. Mdn1=Median exam 1 grade; Mdn2=Median exam 2 grade; Boldface indicates p<.05.

student is likely to underplace the quality of their work when they
perceive task-related cues that indicate the task is hard rather than
easy. In contrast, students tend to adhere to better-than-average
beliefs about themselves when they perceive task-related cues that
indicate the task is easy [2]. Thus, the reversed effect may stem
from task-related cues that corresponded with the easy and hard
tasks. Many of the novices who enrolled in the introductory pro-
gramming course had little to no exposure to programming tasks.
Thus, students’ knowledge of task-related cues that indicate vary-
ing levels of difficulty would not have been developed by the initial
homework (easy). In addition, the students have very little infor-
mation on their peers and their abilities. In contrast, the hardest
homework was the fourth assignment which was assigned during
the middle of the course. Students may have begun developing
knowledge of task-related cues by completing the other program-
ming assignments and may have learned more about their peers’
backgrounds, experiences, and abilities.

RQ2 examined whether novices’ placement judgments changed
or anchored to the initial homework assignment. The results re-
vealed significant changes in the number of overplacers and un-
derplacers from the initial homework to the second homework
in the course. However, there were no changes in the number of
overplacers and underplacers for the remaining homeworks. This
result indicated that students underplaced themselves more on the
first homework, yet overplaced themselves more on the next three
homeworks. This result supported Hypothesis 2, where we ex-
pected students to adjust and anchor their placement judgments to
the initial homework, after they received more information about
their peers’ abilities. Once the first homework was graded, the class
average grade on was publically available via the learner manage-
ment system. It is likely students utilized this information as an
indicator of the quality of their peers’ work for the next home-
works. These results also support Denny et al. [6], which found
that the accuracy of students’ metacognitive judgments did not
improve as they progressed through a programming course. This
result may indicate that novices’ metacognitive calibration anchors
to the initial task and remains stable across multiple tasks with
varying difficulty. These results contradict findings from [3], where
the accuracy of judgments improved over time and over tasks. How-
ever, a notable distinction between [6] and [3] from our study, is
that confidence was measured using estimation judgments instead
of placement judgments. Thus, the findings may stem from differ-
ent task-related cues students relied on to generate estimation and
placement judgments.

Finally, RQ3 examined whether novices who more accurately
placed themselves on the four homeworks performed significantly
higher on exams 1 and 2 compared to those who inaccurately placed.
The analyses showed, first, very few students accurately placed
themselves on more than 1 of the 4 homeworks. It is important to
note that the degree of inaccurate metacognitive calibration was
determined based on how much deviation allowed between the
judgment and objective score. We allowed students an error margin
of 2-5%, such that students who were close to an accurate judgment
were not penalized. Thus, the threshold that determines “accurate
enough” is a limitation in this research and future researchers may
need to explore what is “accurate enough”, even though the stu-
dent is not perfectly accurate in their placement judgment. The
results also showed that students who overplaced on less home-
works had higher exam 2 grades than students who overplaced
more. Similarly, the more often students underplaced, the higher
their exam 2 grades were compared to students who underplaced
on less homeworks. Surprisingly, there were no differences in exam
1 grades between any of the placement groups. These findings
did not support Hypothesis 3, where we expected differences in
performance between those who were more accurate in their place-
ment judgments compared to inaccurate judgments. Rather, the
direction of inaccurate calibration – underplacement vs overplace-
ment – impacted performance differently. Underplacers performed
better than Overplacers, and this was contradictory to the model
of metamemory [25] and prior studies [6, 8] which suggest that
inaccurate metacognition is detrimental to performance. However,
similar results were identified by [15], which found that feelings
of underconfidence were beneficial to performance compared to
overconfidence.

A possible explanation for the lack of differences in exam 1
grades between accurate and inaccurate placement groups could
be the fact that exam 1 was designed to evaluate the first few
programming topics covered in the course. Exam 2 was cumulative
and covered all the topics in the course (Table 1). Thus, grades on
exam 1 may not holistically represent the knowledge that students
had developed in the course, whereas exam 2 grades may better
represent the knowledge developed. To explain why underplacers
performed better than overplacers on exam 2, this result could
stem from a belief that students who underplace hold; they believe
their work needs improvement and may have sought out help and
resources. If a student believed their work was of lower quality
than their classmates’ work, they may have asked the instructor
for help, possibly resulting in higher exam 2 grades. In contrast,
students who overplaced believed their work was better than their
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classmates, and thus may not have seen value in seeking help or
improving their work, possibly contributing to lower exam 2 grades.

Overall, our findings reveal that novice programmers demon-
strated metacognitive monitoring bias on multiple programming
assignments, regardless of task difficulty. While this did not result
in exam 1 grade differences, students who underplaced performed
significantly better on exam 2 than overplacers. We also found that
novices’ demonstrated a reversed hard-easy effect, where they un-
derplaced more on the easiest assignment and overplaced more on
the hardest assignment. Finally, we found evidence that novices’
placement judgments anchored and adjusted to the initial home-
work assignment, demonstrating no improvement in metacognitive
accuracy over the course.

4.1 Threats to Validity
This was an in-person course and participation was voluntary; thus,
some students did not provide placement judgments for some as-
signments. As a result, the sample may not represent all students
who completed the course. However, students did not differ in
performance between those who reported and those who did not
(Table 1). Another limitation involves using IRT to define assign-
ment difficulty. Due to the low variability in homework grades,
these data may not best represent how difficult an assignment was
(grades only reflect the final product of the programs). However,
the iterative submissions may have promoted metacognitive moni-
toring by using the feedback obtained from the automated feedback
tool, possibly improving programs.

4.2 Future Directions and Implications
Future research should consider extending this line of work by
operationalizing feelings of confidence as a multidimensional con-
struct that encompasses three components: estimation, placement,
and precision [24]. In addition, distinguishing between the level
of metacognitive judgment (local vs. global) and the type of cues
each judgment may rely on may explain factors of a task and envi-
ronment that introduce bias and impede novice programmers from
accurate metacognitive monitoring. We also recommend future
researchers investigate whether novices demonstrate other com-
mon biases that contribute to inaccurate metacognitive monitoring
and its role on programming performance. Examining the role of
biases on other metacognitive processes and self-regulated learning,
such as whether underplacers engage in help-seeking behaviors
more than overplacers, may explain why sometimes inaccurate
metacognitive monitoring can also be beneficial for performance.

Implications of this research may advance our understanding
of factors (e.g., task-related cues) that can best support novices’
developing self-awareness and metacognition in introductory pro-
gramming with automated feedback tools. In addition, providing
instructors with information on their students’ placement judg-
ment accuracy across programming assignments could contribute
to integrating instructional materials and pedagogical strategies
to improve students’ metacognitive awareness. For example, iden-
tifying and understanding the metacognitive biases that students
hold in introductory programming courses can support instructors
in implementing targeted instructional interventions to improve
students’ learning and performance. This shift can be used to guide

instructional design and pedagogy, rooted in empirical evidence
and metacognitive theory, which may yield significant benefits in
improving novices’ metacognitive skills and knowledge and perfor-
mance outcomes in introductory programming.
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