Reframing thinking about and modeling learning through complex dynamical systems
Webinar, Society for Learning Analytics Research, remote
Abstract: Learning is a highly individual process of change that emerges from multiple interacting components (e.g. cognitive, social) that occur at varying levels (e.g., individual, group) and timescales (e.g. micro, meso, macro) in constantly changing environments. Due to its complexity, the theoretical assumptions that describe learning are difficult to computationally model, and many existing methodologies are limited by conventional statistics that do not adhere to these assumptions. In recent years, the learning analytics community has explored the potential of complex dynamical systems for modeling and analyzing learning processes. Complex dynamical systems (CDS) approach refers to theoretical views, largely from physics and biology, that preserve the complexity of learning and could be potentially useful in studying socio-/ technical-/ material-/ symbolic systems that learn.